Agafonova, N. V., Kaparullina, E. N., Doronina, N. V. and Y. A. Trotsenko. 2013. Phosphate-solubilizing activity of aerobic methylobacteria. Microbiology, 82: 864-867. https://doi.org/10.1134/S0026261714010020.
Ahmed, E. and S. J. Holmström. 2014. Siderophores in environmental research: roles and applications. Microb. Biotechnol., 7(3): 196-208. https://doi.org/10.1111/1751-7915.12117.
Bazela, K., Solyga-Zurek, A., Debowska, R., Rogiewicz, K., Bartnik, E. and I. Eris. 2014. L-Ergothioneine protects skin cells against UV-induced damage—a preliminary study. Cosmetics, 1(1): 51-60. https://doi.org/10.3390/cosmetics1010051.
Chandrasekaran, P., Sivakumar, R., Nandhitha, G., Vishnuveni, M., Boominathan, P. and M. Senthilkumar. 2017. Impact of PPFM and PGRs on seed germination, stress tolerant index and catalase activity in tomato (Solanum lycopersicum l) under drought. Int. J. Curr. Microbiol. App. Sci., 6(6): 540-549. https://doi.org/10.20546/ijcmas.2017.606.064.
Danko, D., Malli Mohan, G. B., Sierra, M. A., Rucker, M., Singh, N. K., Regberg, A. B., Bell, M.S., O’Hara, N. B., Ounit, R., Mason, C. E. and K. Venkateswaran. 2021. Characterization of spacesuit associated microbial communities and their implications for NASA missions. Front. Microbiol., 12: 608478. https://doi.org/10.3389/fmicb.2021.608478.
Daszkowska-Golec, A. and I. Szarejko. 2013. Open or close the gate–stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci., 4: 138. https://doi.org/10.3389/fpls.2013.00138.
Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., von Mering, C. and J. A. Vorholt. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences, 106(38): 16428-16433. https://doi.org/10.1073/pnas.0905240106.
Doronina, N. V., Trotsenko, Y. A., Kuznetsov, B. B., Tourova, T. P. and M. S. Salkinoja-Salonen. 2002. Methylobacterium suomiense sp. nov. and Methylobacterium lusitanum sp. nov., aerobic, pink-pigmented, facultatively methylotrophic bacteria. Int. J. Syst. Evol. Microbiol., 52(3): 773-776. https://doi.org/10.1099/00207713-52-3-773.
Egamberdieva, D., Wirth, S., Alqarawi, A. A. and E. Abd_Allah. 2015. Salt tolerant Methylobacterium mesophilicum showed viable colonization abilities in the plant rhizosphere. Saudi J. Biol. Sci., 22(5): 585-590. https://doi.org/10.1016/j.sjbs.2015.06.029.
Glick, B.R., 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41(2): 109-117. https://doi.org/10.1139/m95-015.
Gopi, K., Jinal, H. N., Prittesh, P., Kartik, V. P. and N. Amaresan. 2020. Effect of copper-resistant Stenotrophomonas maltophilia on maize (Zea mays) growth, physiological properties, and copper accumulation: potential for phytoremediation into biofortification. Int. J. Phytoremediation., 22(6): 662-668. https://doi.org/10.1080/15226514.2019.1707161.
Green, P. N. and J. K. Ardley. 2018. Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int. J. Syst. Evol. Microbiol., 68(9): 2727-2748. https://doi.org/10.1099/ijsem.0.002856.
Green, P. N., Bousfield, I. J. and D. Hood. 1988. Three new Methylobacterium species: M. rhodesianum sp. nov., M. zatmanii sp. nov., and M. fujisawaense sp. nov. Int. J. Syst. Evol. Microbiol., 38(1): 124-127. https://doi.org/10.1099/00207713-38-1-124.
Green, P. N. and I. J. Bousfield. 1983. Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int. J. Syst. Evol. Microbiol., 33(4): 875-877. https://doi.org/10.1099/00207713-33-4-875.
Hardoim, P. R., van Overbeek, L. S. and J. D. van Elsas. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol., 16(10): 463-471. https://doi.org/10.1016/j.tim.2008.07.008.
Holland, M. A. and J. C. Polacco. 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol., 98(3): 942-948. https://doi.org/10.1104/pp.98.3.942.
Ivanova, E. G., Doronina, N.V. and Y. A. Trotsenko. 2001. Aerobic methylobacteria are capable of synthesizing auxins. Microbiology, 70: 392-397. https://doi.org/10.1023/A:1010469708107
Jinal, H. N., Gopi, K., Prittesh, P., Kartik, V. P. and N. Amaresan. 2019. Phytoextraction of iron from contaminated soils by inoculation of iron-tolerant plant growth-promoting bacteria in Brassica juncea L. Czern. Environ. Sci. Pollut. Res., 26: 32815-32823.
https://doi.org/10.1007/s11356-019-06394-2.
Kazan, K., 2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci., 20(4): 219-229. https://doi.org/10.1016/j.tplants.2015.02.001.
Kelley, S. T., Theisen, U., Angenent, L. T., St. Amand, A. and N. R. Pace. 2004. Molecular analysis of shower curtain biofilm microbes. Appl. Environ. Microbiol., 70(7): 4187-4192. https://doi.org/10.1128/AEM.70.7.4187-4192.2004.
Kosobryukhov, A., Khudyakova, A. and V. Kreslavski. 2020. Impact of UV radiation on photosynthetic apparatus: adaptive and damaging mechanisms. Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I: General Consequences and Plant Responses, 555-576. https://doi.org/10.1007/978-981-15-2156-0_18.
Krishnamoorthy, R., Anandham, R., Senthilkumar, M. and V. Venkatramanan. 2021. Adaptation mechanism of methylotrophic bacteria to drought condition and its strategies in mitigating plant stress caused by climate change. Exploring synergies and trade-offs between climate change and the sustainable development goals, 145-158. https://doi.org/10.1007/978-981-15-7301-9_7.
Kumar, V., Singh, A., Mithra, S.A., Krishnamurthy, S. L., Parida, S. K., Jain, S., Tiwari, K. K., Kumar, P., Rao, A. R., Sharma, S. K. and J. P. Khurana. 2015. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res., 22(2): 133-145. https://doi.org/10.1093/dnares/dsu046.
Kwak, M. J., Jeong, H., Madhaiyan, M., Lee, Y., Sa, T. M., Oh, T. K. and J. F. Kim. 2014. Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PloS one, 9(9): 106704. https://doi.org/10.1371/journal.pone.0106704.
Madhaiyan, M., Poonguzhali, S. and T. Sa. 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere, 69(2): 220-228. https://doi.org/10.1016/j.chemosphere.2007.04.017.
Madhaiyan, M., Kim, B. Y., Poonguzhali, S., Kwon, S. W., Song, M. H., Ryu, J. H., Go, S. J., Koo, B. S. and T. M. Sa. 2007. Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int. J. Syst. Evol. Microbiol., 57(2): 326-331. https://doi.org/10.1099/ijs.0.64603-0.
Madhaiyan, M. and S. Poonguzhali. 2014. Methylobacterium pseudosasicola sp. nov. and Methylobacterium phyllostachyos sp. nov., isolated from bamboo leaf surfaces. International J. Syst. Evol. Microbiol., 64(7): 2376-2384. https://doi.org/10.1099/ijs.0.057232-0.
Madhaiyan, M., Poonguzhali, S., Ryu, J. and T. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta, 224: 268-278. https://doi.org/10.1007/s00425-005-0211-y.
Mano, Y. and K. Nemoto. 2012. The pathway= of auxin biosynthesis in plants. J. Exp. Bot. 63(8): 2853-2872. https://doi.org/10.1093/jxb/ers091.
Mishra, B. K., Meena, K. K., Dubey, P. N., Aishwath, O. P., Kant, K., Sorty, A. M. and U. Bitla. 2016. Influence on yield and quality of fennel (Foeniculum vulgare Mill.) grown under semi-arid saline soil, due to application of native phosphate solubilizing rhizobacterial isolates. Ecol. Eng., 97: 327-333. https://doi.org/10.1016/j.ecoleng.2016.10.034.
Novikova, N., De Boever, P., Poddubko, S., Deshevaya, E., Polikarpov, N., Rakova, N., Coninx, I. and M. Mergeay. 2006. Survey of environmental biocontamination on board the International Space Station. Res. Microbiol., 157(1): 5-12. https://doi.org/10.1016/j.resmic.2005.07.010.
Prittesh, P., Avnika, P., Kinjal, P., Jinal, H. N., Sakthivel, K. and N. Amaresan. 2020. Amelioration effect of salt-tolerant plant growth-promoting bacteria on growth and physiological properties of rice (Oryza sativa) under salt-stressed conditions. Arch. Microbiol., 202(9): 2419-2428. https://doi.org/10.1007/s00203-020-01962-4.
Raja, P., Uma, S. and S. Sundaram. 2006. Non-nodulating pink-pigmented facultative Methylobacterium sp. with a functional nifH gene. World Journal of Microbiology and Biotechnology, 22: 1381-1384. https://doi.org/10.1007/s11274-006-9199-0
Rajagopalan, K., 1956. Variability in size and frequency of stomata in leaves of rice varieties and its correlation in drought resistance. https://doi.org/10.29321/MAJ.10.A04239.
Rani, V., Bhatia, A. and R. Kaushik. 2021. Inoculation of plant growth promoting-methane utilizing bacteria in different N-fertilizer regime influences methane emission and crop growth of flooded paddy. Sci. Total Environ., 775: 145826. https://doi.org/10.1016/j.scitotenv.2021.145826.
Sage, E., Girard, P. M. and S. Francesconi. 2012. Unravelling UVA-induced mutagenesis. Photochem. Photobiol. Sci., 11(1): 74-80. https://doi.org10.1039/c1pp05219e.
Schauer, S., Kämpfer, P., Wellner, S., Spröer, C. and U. Kutschera. 2011. Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. Int. J. Syst. Evol. Microbiol., 61(4): 870-876. https://doi.org/10.1099/ijs.0.021915-0.
Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R. and B. Zheng. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9(7): 285. https://doi.org/10.3390/biom9070285
Shi, R. L., Hao, H. M., Fan, X. Y., Karim, M. R., Zhang, F. S. and C. Q. Zou. 2012. Responses of aerobic rice (Oryza sativa L.) to iron deficiency. J. Integr. Agric., 11(6): 938-945. https://doi.org/10.1016/S2095-3119(12)60084-7.
Silva, R., Filgueiras, L., Santos, B., Coelho, M., Silva, M., Estrada-Bonilla, G., Vidal, M., Baldani, J. I. and C. Meneses. 2020. Gluconacetobacter diazotrophicus changes the molecular mechanisms of root development in Oryza sativa L. growing under water stress. International Journal of Molecular Sciences, 21(1): 333. https://doi.org/10.3390/ijms21010333
Singh, D. V., Chauhan, R. P. S., Singh, K. and B. Pal. 1981. Nitrogen and phosphorus needs of gram (Cicer arietinum L.) along with bacterial fertilization. https://doi.org/10.29321/MAJ.10.A03087.
Sivakumar, R., Nandhitha, G. K., Chandrasekaran, P., Boominathan, P. and M. Senthilkumar. 2017. Impact of pink pigmented facultative methylotroph and PGRs on water status, photosynthesis, proline and NR activity in tomato under drought. Int J Curr Microbiol App Sci., 6(6): 1640-1651. https://doi.org/10.20546/ijcmas.2017.606.192.
Sorty, A. M., Meena, K. K., Choudhary, K., Bitla, U.M., Minhas, P. S. and Krishnani, K. K., 2016. Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L) on germination and seedling growth of wheat under saline conditions. Appl. Biochem. Biotechnol., 180: 872-882. https://doi.org/10.1007/s12010-016-2139-z.
Sy, A., Giraud, E., Jourand, P., Garcia, N., Willems, A., De Lajudie, P., Prin, Y., Neyra, M., Gillis, M., Boivin-Masson, C. and B. Dreyfus. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol., 183(1): 214-220. https://doi.org/10.1128/jb.183.1.214-220.2001.
Szwetkowski, K. J. and J. O. Falkinham. 2020. Methylobacterium spp. as emerging opportunistic premise plumbing pathogens. Pathogens, 9(2): 149. https://doi.org/10.3390/pathogens9020149.
Tang, X., Liu, H., Qin, H., Zhao, J., Wang, H., Li, B. and Y. Lu. 2023. Organic/inorganic phosphorus partition and transformation in long-term paddy cultivation in the Pearl River Delta, China. Sci. Rep., 13(1): 11122. https://doi.org/10.1038/s41598-023-38369-2.
Tito, R., Vasconcelos, H. L. and K. J. Feeley. 2018. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Glob. Change Biol., 24(2): e592-e602. https://doi.org/10.1111/gcb.13959.
Van Aken, B., Yoon, J. M. and J. L. Schnoor. 2004. Biodegradation of nitro-substituted explosives 2, 4, 6-trinitrotoluene, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, and octahydro-1, 3, 5, 7-tetranitro-1, 3, 5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides× nigra DN34). Appl. Environ. Microbiol., 70(1): 508-517. https://doi.org/10.1128/AEM.70.1.508-517.2004.
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. and A. Dufresne. 2015. The importance of the microbiome of the plant holobiont. New Phytol., 206(4): 1196-1206. https://doi.org/10.1111/nph.13312.
Ventorino, V., Sannino, F., Piccolo, A., Cafaro, V., Carotenuto, R. and O. Pepe. 2014. Methylobacterium populi VP2: plant growth‐promoting bacterium isolated from a highly polluted environment for polycyclic aromatic hydrocarbon (PAH) biodegradation. Sci. World J., 2014(1): 931793. https://doi.org/10.1155/2014/931793.
Verma, P., Yadav, A. N., Kumar, V., Singh, D. P. and A. K. Saxena. 2017. Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. Plant-microbe interactions in agro-ecological perspectives: volume 2: microbial interactions and agro-ecological impacts, 543-580. https://doi.org/10.1007/978-981-10-6593-4_22.
Wood, A. P., Kelly, D. P., McDonald, I. R., Jordan, S. L., Morgan, T. D., Khan, S., Murrell, J. C. and E. Borodina. 1998. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch. microbiol., 169: 148-158. https://doi.org/10.1007/s002030050554.
Zhang, W., Zhang, T., Wu, S., Wu, M., Xin, F., Dong, W., Ma, J., Zhang, M. and M. Jiang. 2017. Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy. RSC advances., 7(7): 4083-4091. https://doi.org/10.1039/C6RA27038G.