Madras Agricultural Journal
Loading.. Please wait
Research Article | Open Access | Peer Review

Use of Statistical Models in Predicting Groundnut Yield in Relation to Weather Parameters

Volume : 108
Issue: Special
Pages: 1 -
Downloads:
Published: November 03, 2021
Download

Abstract


In Tamil Nadu, groundnut is an essentialand major oilseed crop, mainly grown under rainfed conditions. The changes in weather parameters might affect the productivity of groundnut. Hence, crop yield forecasting based on weather parameters is essential for proper planning, decision-making, and buffer stocking policy formulation. As for the data with multicollinearity, penalized regression models i.e.Ridge, Least Absolute Selection and Shrinkage Operator (LASSO) and Elastic Net (ENet), are better alternatives to classical linear regression. The data on weather parameters such as maximum temperature(Tmax), minimum temperature (Tmin), morning relative humidity (RH I), evening relative humidity (RH II), and rainfall were collected for 29 years from1991-2019. The weather indices approach was used in this study. The collected data were partitioned into training, and testing datasets and the hyperparameters of penalized regression models were tuned using cross-validation. The performance of the models wasevaluated using an adjusted coefficient of determination (R2adj), Root Mean Squared Error (RMSE), normalized RMSE (nRMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) as the goodness of fit criteria. The results revealed that all the Penalized regression models provide a better fit to data. The SMLR and ENet were found to predict with better accuracy. Hence, these methods can be used for groundnut yield forecasting during Kharif season for the Coimbatore district of Tamil Nadu.

DOI
Pages
1 -
Creative Commons
Copyright
© The Author(s), 2025. Published by Madras Agricultural Students' Union in Madras Agricultural Journal (MAJ). This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited by the user.

Keywords


Stepwise Multiple Linear Regression; Ridge regression; LASSO; Elastic Net; Groundnut yield prediction: Weather indices
footer

Copyright © Madras Agricultural Journal | Masu Journal All rights reserved.