Effect of crop residue management of early season legumes on the succeeding rainfed finger millet

K. RAMAMOORTHY, A. CHRISTOPHER LOURDURAJ, S. ALAGUDURAJ AND O.S. KANDASAMY

Dept. of Agronomy, Tamil Nadu Agricultural University, Coimbatore - 641 003, Tamil Nadu

Abstract: Field experiments were conducted at the Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu during kharif and rabi seasons of 2000-2003 under rainfed condition. The treatments included raising greengram or cowpea for vegetable/grain purpose and utilization of haulms as fodder as well for incorporation alongwith fallow (no pulse crop). For the second season crop of finger millet, the above treatments were kept as main plot treatments with the subplot treatments of either transplanting or direct sowing of finger millet with and without phosphorus. Results of the study revealed that maximum green fodder production and yield were obtained in cowpea as compared to greengram. In succeeding finger millet crop, higher grain and straw yield and net return were obtained when cowpea was incorporated in the early season followed by transplanting of finger millet with P application.

Key words: Legumes, Finger millet, Relay cropping, Phosphorus, Yield, Net return, B:C ratio.

Introduction

Many legumes viz. cowpea, blackgram, greengram and horsegram invariably find a place in finger millet based cropping systems. These crops are taken either as a preceding crop or as an intercrop or as relay crop in the system depending upon the rainfall distribution and soil type. Many high yielding short duration varieties of these crops have been evolved in recent years for increasing cropping intensity. Hence, the feasibility of double cropping/ inter cropping and relay cropping is to be explored wherever bimodal rainfall is a common feature. Seth and Balyan (1989) reported that inclusion of legumes in cropping system improves the nitrogen status of soil and increases the yield of succeeding cereal crops. Mehrotra and Ali (1970) stated that the legume after meeting their own nitrogen, can supply a part of the nitrogen that is fixed to another non-legume crop during the growth period and partly through the legume death through ploughing of nodules which gradually degenerate and release the N into the soil. Hence, the present study was mooted with an objective to findout the effect of preceding early season legumes on growth and yield of finger millet (Co 11).

Materials and Methods

Field experiments were conducted at dryland farm of Department of Agronomy, Tamil Nad Agricultural University, Coimbatore, Tamil Nadi India during kharif and rabi seasons of 2003. Cowpea CO 2 and greengram (Pusabad were raised during kharif (I season) under randomized block design with five treatment and three replications. The experimental treatment are as follows:

I Season (Main plot)

- M₁ Cowpea for fodder after harvest for vegetable purpose
- M₂ Cowpea for incorporation after harvel for vegetable purpose
- M₃ Greengram for fodder after harvest for grain purpose
- M₄ Greengram for incorporation after harves for grain purpose
- M, Fallow
- II Season (Sub plot)
- S₁ Transplanting of finger millet with
- S₂ Transplanting of finger millet without
- S₃ Direct sowing of finger millet with
 S₄ Direct sowing of finger millet without

fable 1. Growth attributes of early season cowpea and greengram

freatments	412	Plant he	eight (cm)		Green F	odder yield	(kg ha-1)	
	2000-01	2001-02	2002-03	Mean	2000-01	2001-02	2002-03	Mean
M,	81	72	76	76.3	21978	17958	18241	19392
M, M,	85	74	78	79.0	22099	18249	19320	19889
M,	76	65	70	70.3	8318	7758	8540	8205
M,	. 79	68	72	73.0	8526	7994	9210	8576
M _s		-		<u>-</u> :	≟ .	4:	-	+
CD (P=0.05)	1.7	1.4	1.9		263	297	289	-

Table 2. Vegetable and grain yield of early season cowpea and greengram.

reatments	Ve	getable yie	eld (kg ha-)		Grain yield	(kg ha ⁻¹)	
-	2000-01	2001-02	2002-03	Mean	2000-01	2001-02	2002-03	Mean
M,	4009	4065	3973	4019	*	_	¥;	₽,
M ₂	3725	4250	4166	4047	-	•	2	<u> </u>
M.	-			•	602	705	852	719
M,	. :-	2.	4		630	748	842	740
M,	· .	4	-	<u>, , , , , , , , , , , , , , , , , , , </u>	4	-	-	-

Table 3. Effect of early season legumes on soil fertility status

Treat- ments	Available nitrogen (kg ha-1)			Avai	lable phos _l (kg ha ⁻¹)	phorus	Avai	lable potas (kg ha-¹)	Available potassium (kg ha-1)		
	2001-02	2002-03	Mean	2001-02	2002-03	Mean	2001-02	2002-03	Mean		
M ₁	193	194	194	9.6	9.6	9.6	552	555	554		
M,	198	193	196	9.7	9.6	9.7	558	554	556		
M,	190	182	186	9.3	9.3	9.3	552	548	550		
M,	190	184	187	9.4	9.3	9.4	551	555	553		
M,	180	179	180	9.0	8.8	8.9	539	538	539		
CD (5%)	4.9	5.6		NS	NS	=)	11.9	13.5	*		

The second season experiment on finger millet was laid out in split plot design with three replications. The soil of the experimental site was clay loam in texture, with pH 8.0 and EC 0.85 dSm⁻¹. The soil had low available nitrogen (185 kg ha⁻¹), medium available phosphorus (9 kg ha⁻¹) and high potassium (538 kg ha⁻¹). N and K fertilizers were applied at 40 and 20 kg ha⁻¹, respectively and P fertilizer

was applied based on the treatment schedule. A total rainfall of 504, 342 and 402mm was received in 30, 25 and 27 rainy days during the respective years. In the second year (2001-02), the succeeding finger millet crop did not establish well due to scarcity of rainfall. Observations with regard to growth, yield parameters and yield of legumes and finger millet were recorded. Economics of the system was also worked out.

Results and Discussion

The results revealed that, in the first crop of legumes, significantly higher plant height and drymatter production (DMP) at harvest were recorded in cowpea crop compared to greengram. Among the treatments, significantly higher plant height and green fodder production were recorded in the treatment cowpea for incorporation after harvest for vegetable purpose (M₂) which recorded plant height of 79 cm and green fodder production of 19889 kg ha⁻¹ as compared to greengram.

In the succeeding crop of finger millet, significantly higher plant height, yield attributes and yield were recorded when preceding either cowpea or greengram was grown (M₁-M₄) compared to when the field was left fallow. Among the main plot treatments, cowpea incorporation after harvest for vegetable purpose (M₂) recorded significantly higher plant height, yield attributes and yield of the succeeding finger millet crop (2640 kg ha⁻¹). With respect to sub plot treatments transplanting finger millet (S₁ and S₂) recorded significantly higher growth and yield attributes and yield compared to direct sown finger millet (S₃ and S₄). Application of P significantly increased

the finger millet yield compared to without P. Transplanting finger millet with P(S₁) record higher finger millet grain and straw yields 2390 and 5334 kg ha⁻¹, respectively. Increating finger millet yield might be attributed the effect of legume cowpea, which might happrovided an additional N to succeeding finge millet through biological N fixation at mineralisation of root biomass. Similar resulting reported by Balyan (1997).

In general, growth, yield attributes a yield of finger millet were markedly high when it was sown after incorporation of preceding cowpea into the soil than it was removed from the field for fodder. Incorporation of cowperoduced the maximum effect, which make the bedue to maximum contribution of nitrosto the soil through this crop. These resides in close agreement with Seth and Bal (1985) and Velayudham and Seth (1986)

The economics showed that cowpincorporated in the early season followed transplanting of finger millet with P and with P registered higher net returns and B:C racompared to other treatments.

Table 4. Effect of short duration legumes on plant height and yield attributes of succeeding finger millet.

Treatments	Pla	nt height (cm)	No. o	of tillers hi	11-1	No. of prod	luctive tille	ers plai
	2000-01	2002-03	Mean	2000-01	2002-03	Mean	2000-01	2002-03	Mean
M,	99	98	98	8.6	8.2	8.4	6.0	4.6	5.3
M ₂	104	105	104	9.4	9.3	9.4	7.1	5.7	6.4
M,	99	100	99	8.4	8.0	8.2	6.6	4.4	5.5
M ₄	102	103	102	8.0	9.2	8.6	5.8	5.3	5.6
M _s	87	84	85	7.7	7.6	7.7	4.7	4.0	4.4
CD (P=0.05)	4.7	7.1		0.5	0.71	-	0.39	0.33	2
S,	104	106	105	9.7	9.6	9.6	7.6	7.4	7.5
S ₂	98	101	99	8.9	8.8	8.8	6.1	6.8	6.5
S ₁ S ₂ S ₃ S ₄	97	98	97	7.9	7.9	7.9	5.8	2.6	4.2
S ₄	93	94	93	7.1	7.2	7.2	4.6	2.4	3.5
CD (P=0.05)	3.6	4.3	-	0.38	0.44		0.65	0.68	-
M at S									
CD (P=0.05) S at M	5.6	7.3	<u>-</u>	0.63	0.69		0.48	0.42	
CD (P=0.05)	4.3	4.8	-	0.47	0.59	* <u></u>	0.30	0.44	•

Table 5. Effect of short duration legumes on yield and economics of succeeding winger miner

1 - 1

Mi, 2367 2263 2315 4802 2991 3897 7984 6787 7386 291 254 254 Mi, 2462 2367 2263 2315 4802 2991 3897 7984 6787 7386 291 254 Mi, 2467 2368 2370 2890 3910 7125 6820 270 208 239 Mi, 1746 1614 1680 3804 2847 3339 5821 5807 280 270 228 CD (P=0.05) 248 2395 2430 3804 2847 3339 5821 5807 280 224 239 CD (P=0.05) 248 239 2847 3339 5821 5807 286 246 254 230 Si S	Treatment	Grai	Grain yield (kg ha ⁻¹)	ha ⁻¹)	Stra	Straw yield (kg ha")	ha-1)	Net	Net return (Rs ha-1)	ha-1)	1 1 1 1	B:C ratio	
2367 2263 2315 4802 2991 3897 7984 6787 7386 291 216 2677 2603 2640 5415 3121 4268 9074 8825 8950 3.17 250 2302 2238 2640 5415 3121 4268 9074 8825 8950 3.17 250 2465 2238 2270 4940 2880 3910 7125 6514 6820 2.70 2.08 2465 2395 2430 3804 2887 3821 5807 580 2.46 248 239 3821 5821 5807 5807 2.36 2.24 1833 2865 2349 5076 5518 5297 7516 10549 10549 2.67 2.85 1831 1463 4242 422 4231 7042 5672 6357 2.01 1.67 246 249 - 259	4	2000-01	2002-03	Mean	2000-01	2002-03	Mean	2000-01	2002-03	Mean	2000-01	2002-03	Mean
2677 2603 2640 5415 3121 4268 9074 8825 8950 3.17 2.50 2302 2238 2270 4940 2880 3910 7125 6514 6820 270 208 2465 2395 2430 5807 3095 4051 7611 8029 7820 270 208 1746 1614 1680 3804 2847 3339 5821 5807 5807 236 224 248 239 - 279 294 -	×	2367	2263	2315	4802	2991	3897	7984	1819	7386	2.91	2.16	2.54
2302 2238 2270 4940 2880 3910 7125 6514 6820 2.70 2.08 2465 2395 2430 5007 3095 4051 7611 8029 7820 270 208 1746 1614 1680 3804 2847 3339 5821 5807 236 224 248 239 279 279 294 - - - - 246 -	×	2677	2603	2640	5415	3121	4268	9074	8825	0568	3.17	2.50	2.84
2465 2395 2430 5607 3095 4051 7611 8029 7820 282 246 1746 1614 1680 3804 2847 3339 5821 5807 5807 236 224 248 239 - 279 294 -	Z.	2302	2238	2270	4940	2880	3910	7125	6514	6820	2.70	2.08	2.39
1746 1614 1680 3804 2847 3339 5821 5807 5807 236 224 248 239 279 294 -	×	2465	2395	2430	5007	3095	4051	7611	8029	7820	2.82	2.46	2.64
248 239 - 279 294 -	×	1746	1614	1680	3804	2847	3339	5821	5807	2807	2.36	2.24	2.30
1885 2895 2390 5107 5561 5334 7582 10864 10649 2.60 2.90 1833 2865 2349 5076 5518 5297 7516 10549 10549 2.67 2.85 1710 1450 1580 4750 468 4715 7152 5778 6465 2.07 1.67 1625 1300 1463 4242 422 4231 7042 5672 6357 2.01 1.50 189 174 - 269 301 -	cb (P=0.05)	248	239		279	294	1.	•	. *	•	•		1
1833 2865 2349 5076 5518 5297 7516 10549 10549 267 285 1710 1450 1580 4750 468 4715 7152 5778 6465 207 1.67 1625 1300 1463 4242 4231 7042 5672 6357 201 1.67 189 174 - 269 301 - - - - - - 246 249 - 158 162 - - - - - - - 246 249 - 138 140 -	Š	1885	2895	2390	5107	5561	5334	7582	10864	10864	2.60	2.90	2.75
1710 1450 1580 4750 468 4715 7152 5778 6465 207 1.67 1625 1300 1463 4242 423 4231 7042 5672 6357 2.01 1.67 189 174 - 269 301 - - - - - - 246 249 - 138 140 - - - - - - 248 242 - 275 287 - - - - - -	- vo	1833	2865	2349	5076	5518	5297	7516	10549	10549	2.67	2.85	2.59
1625 1300 1463 4242 422 4231 7042 5672 6357 201 1.50 189 174 - 269 301 -	w.	1710	1450	1580	4750	468	4715	7152	5778	6465	2.07	1.67	1.87
189 174 - 269 301 -	'n	1625	1300	1463	4242	422	4231	7042	5672	6357	2.01	1.50	1.76
130 120 - 158 246 249 - 219 124 118 - 138 248 242 - 275	CD (P=0.05)	189	174	•	269	30	•	į	1		j i		ï
246 249 - 219 124 118 - 138 248 242 - 275	M at S	130	120	,	158	162	•		•	4.	î	÷	•
248 242 - 275	CD (P=0.05)	246	249	ï	219	319	T;	•	í.	i.	ť		•
248 242 - 275	S at M	124	118	·,	138	140	1	,	ì	12	ė	ř	Ü
	CD (P=0.05)	248	242	•	275	287	1.	٠	ť	•:	<i>i</i>	•	ì

With regard to soil fertility status, higher available nitrogen (196 kg ha⁻¹) available phosphorus (9.7 kg ha⁻¹) and available potassium were registered with cowpea (CO 2) for incorporation after harvest for vegetable purpose. Similar results were reported by Mehrotra and Ali (1976).

In conclusion, cowpea raised in the early season for incorporation after harvest for vegetable purpose followed by transplanting finger millet in the second season with basal application of P registered higher grain yield with increased net returns and B:C ratio under rainfed condition.

References

Balyan, J.S. (1997). Performance of maize (Zea mays) based intercropping systems and their after effect on wheat (Triticum aestivum). Indian J. Agron. 42: 26-28.

Mehrotra, O.N. and Ali, A.S. (1970).
Mixed cropping a scientific analysis. Sci. Cult. 36: 196-199.

Seth, Jagdish and Balyan, J.S. (1985).
Plant residue management in some cropping systems. Indian J. Agron. 30: 483-487.

Seth, Jagdish and Balyan, J.S. (1989). Residual management of winter legumes on N economy and nutrient cycling in maize. Indian J. Agron. 34: 97-99.

Velayudham, K. and Jagdish Seth (1986). Effect of the preceding crops of cowpea and maize on the yield of wheat. *Indian J. Agric.* Sci. 56: 263-266.

(Received: June 2003; Revised: Dec. 2003)