Humic acid and fertilizers on nutrition of rice in an Alfisol and Inceptisol

K. SATHYA BAMA, G. SELVAKUMARI, R. NATESAN AND P. SINGARAM
Dept. of Soil Science & Agrl. Chemistry, Tamil Nadu Agrl. University, Coimbatore-641 003, Tamil Nadu

Abstract: To study the fertilizers and humic acid on nutrient uptake in Alfisol and Inceptisol, two field experiments were conducted during rabi 2001 with various levels of fertilizers and humic acid treatments. A large increase was recorded in the uptake of nutrients for the application of humic acid (HA) upto 40 kg ha⁻¹. The significant increase of N, P and K uptake were recorded upto 20 and 10 kg HA ha⁻¹ respectively in both Alfisol and Inceptisol. In the presence of humic acid, the effect of 75 and 100% NPK fertilizers on nutrient uptake and grain yield was comparable with each other.

Key words: Rice, Humic acid, Nutrient uptake, Alfisol, Inceptisol.

Introduction

Humic acid application had a definite input on the protein synthesis and nucleic acid synthesis (Guminski, 1968). The different humic acids had significant effect on nitrogen and phosphorus uptake by oats. The efficiency indices of various humic acids ranged between 25 and 65 per cent (Mishra and Srivastava, 1988). The humate migrated from one part of the root system into another, contributing to a more intensive absorption of iron (Aso and Sakai, 1963).

Raina and Goswami (1988) reported a significant increase in the uptake of N.P. Cu, Zn and Fe upto 20-ppm carbon as humic acid over control. Saalbach (1956) stated that humic acid enhanced the uptake and content of nitrogen in rye. Jelanic et al. (1966) reported that HA from lignite increased the P content and uptake in maize plants. Application of 10kg HA ha-1 as potassium humate along with 75 per cent recommended dose of fertilizer found to increase the crude protein content and mineral nutrition (P, K, Ca, Mg, Zn, Cu, Fe and Mn) of amaranthus (Bama and Selvakumari, 2001). Govindasamy and Chandrasekaran (2002) reported that, addition of humic acid was found to increase the content and enhance the uptake of N, P, K, Ca, Mg, Fe, Mn and Zn by rice. Effect of humic acid may vary with the source, soil type and variety of rice and hence to study the effect of lignithumic acid on rice in an Alfisol and Inceptiso the study was undertaken.

Materials and Methods

To study the influence of humic acidand fertilizers on nutrient uptake in rice, two trials were carried out during rabi 2001 i.e. one in Alfisol at wet lands Tamil Nadu Agricultural University (ADT36), other one in Inceptisol at Agricultural Research Station, Bhavanisagar (ADT39). The experimental soil of the wetlands, Tamil Nadu agricultural University, Coimbatore was clay loam in texture with the pH and EC of 8.0 and 0.32 dSm-1 respectively. The taxonomy of the soil was Typic Haplustalf. The organic carbon content and CEC of the soil were 0.706 per cent and 26.7 cmol (p+) kg-1 respectively. The soil was low in KMnO,-N (238 kg ha-1), medium in Olsen-P (19 kg ha-1) and high in NH4OAc K (670 kg ha-1). The soil (Typic Ustropept) of the experimental field at Agricultural Research Station, Bhavanisagar was sandy loam in texture with a pH and EC of 7.7 and 0.30 dSm⁻¹ respectively. The soil organic carbon content was 0.58 per cent and the cation exchange capacity was 19.5 cmol (p+) kg-1. The soil was low in KMnO₄-N (198 kg ha-1), medium in Olsen-P (16 kg ha-1) and medium in NH₄OAc-K (170 kg ha-1). The recommended dose of NPK fertilizer

Table 1. Humic ucid and terunzers on is uprate the inc to elec in Ainer.

National Problems			Till	Tillering			Flowering	ing			Grain	ii			S	Straw	
13 1087 1163 901 1651 3690 4457 32.66 904 4091 4282 3092 686 3107 344.5 535 1426 1538 1426 51.99 5347 3292 51.92 5347 3292 54.61 1431 47.42 4887 5261 5262 56.78 45.61 1431 47.42 4887 5261 1538 1289 20.61 1598 53.62 57.24 47.91 1539 52.64 52.91 53.81 44.12 52.91 53.84 44.12 55.82 56.86 45.11 1581 52.14 52.91 52.	Treatments	ž	Σ,	Σ	Mean	Σ	M,	Σ	Mean	Σ	M,	Ä,	Mean	ĭ	Σ̈́	Σ	Mean
12 12 12 12 12 13 13 13	S,	453	10.87	11.63	10.6	16.51	36,90	44.57	32.66	9.04	40.91	42.82	30.92	98.9	31.07	34.42	24.12
6.75 15.34 16.58 12.89 20.661 51.99 54.27 42.29 15.23 55.62 56.78 42.54 12.33 42.49 43.52 85.65 45.17 13.8 83.5 44.61 14.41 47.42 88.7 83.6 16.61 17.82 12.65 26.22 36.2 36.2 36.2 43.0 13.8 55.2 44.61 14.41 47.42 25.6 6.5 41.71 17.8 45.2 45.6 6.6 40.17 11.8 45.2 43.6 6.6 40.17 11.8 45.2 43.6 6.6 6.6 40.17 11.8 45.2 43.6 6.6 6.6 40.17 11.8 45.2 43.6 6.6 6.6 40.17 11.8 45.2 43.6 6.6 6.6 40.17 11.8 45.2 43.6 6.6 6.6 40.17 11.8 45.2 43.6 6.6 6.6 40.17 11.8 45.2 43.6 6.6 6.6 40.17 11.8 45.2 43.6 6.6 6.6 40.17 11.8 45.2 43.6 6.6 6.6 40.17 11.8 45.2 43.6 6.6 6.8 13.6 13.6 41.7 4.8 45.2 43.6 43.0 13.6 13.0 13.6 43.0 1	S.	5.93	14.26	15.75	11.98	18.41	47.80	50.44	38.88	12.91	51.92	53.47	39.43	9.6	38.08	42.41	30.15
136 17.00 13.51 23.04 34.43 55.88 44.12 16.74 57.87 59.22 44.61 14.41 47.42 48.87 250 14.55 15.29 12.62 55.52 57.24 42.79 17.85 59.99 60.66 45.71 15.81 52.14 52.51 250 14.51 15.99 12.46 20.81 53.91 53.52 43.61 40.80 11.36 47.73 42.99 250 14.51 15.99 12.46 20.81 53.91 53.52 44.41 12.02 44.81 251 14.51 15.99 12.46 20.81 51.08 56.29 44.63 16.84 57.28 58.27 44.13 13.63 47.23 48.48 252 14.79 15.99 12.46 20.81 51.08 53.94 44.63 16.84 57.28 58.27 44.13 13.63 47.23 48.48 252 13.7	's	6.75	15.34	16.58	12,89	20.61	51.99	5427	42.29	15.23	55.62	56.78	42.54	12,33	42.49	43.52	32.78
835 664 1782 1426 2362 5622 5724 4279 1785 59.99 60.66 46.17 1581 52.14 52.12 54.08 52.24 44.05 13.13 44.86 44.06 13.13 42.15 42.04 42	s,	736	16.16	17.00	.13.51	22.04	54.43	55.88	44.12	16.74	57.87	5922	44.61	14.41	47.42	48.87	36.90
650 1495 1627 1257 2136 5301 53.63 42.87 1490 56.28 56.96 42.71 11.78 45.22 45.65 6.88 15.03 12.29 1934 53.91 53.26 43.00 14.44 57.28 58.27 44.13 12.02 43.29 48.88 6.88 15.03 12.35 15.08 53.24 44.63 16.84 57.28 58.27 44.13 12.02 43.21 44.86 12.05 12.05 12.46 20.81 51.08 53.45 41.78 14.74 54.15 55.35 41.41 12.02 43.21 44.86 12.05	S,	836	19.91	17.82	14.26	23.62	56.52	57.24	45.79	17.85	59.99	99.09	46.17	15.81	52.14	52.51	40.15
1451 1598 1229 1984 5359 5526 43.00 1444 53.34 54.61 40.80 1136 41.73 42.99 658 1563 16.91 13.13 23.51 54.08 5629 44.63 16.84 57.28 58.27 44.13 13.63 47.23 48.8 103	Š,	650	14.95	16.27	12.57	21.96	53.01	53.63	42.87	14.90	56.28	56.96	42.71	11.78	45.52	45.65	34.32
5.86 15.63 16.91 13.13 23.51 54.08 56.29 44.63 16.84 57.28 58.27 44.13 13.63 47.23 48.48 6.58 14.79 15.99 12.46 20.81 51.08 53.45 41.78 14.74 54.15 55.35 41.41 12.02 43.21 44.86 1.17	Š.	637	14.51	15.98	12.29	19.84	53.91	55.26	43.00	14.44	53.34	54.61	40.80	11.36	41.73	42.99	32.03
117 141 150 150 1246 20.81 51.08 53.45 41.78 14.74 54.15 55.55 41.41 12.02 43.21 44.86 1.05	S,	98.9	15.63	16.91	13.13	23.51	54.08	56.29	44.63	16.84	57.28	58.27	44.13	13.63	47.23	48.48	36.45
Humic acid and fertilizers on N uptake (kg ha¹) by rice in Inceptisol 1.05 1	Mean	6.58	14.79	15.99	12.46	20.81	51.08	53,45	41.78	14.74	54.15	55.35	41.41	12.02	43.21	44.86	33.36
Humic acid and fertilizers on N uptake (kg ha¹) by rice in Inceptisol Humic acid and fertilizers on N uptake (kg ha¹) by rice in Inceptisol Tillering M ₁ M ₂ M ₃ M ₄ M ₄ M ₅ M ₄	CD (P=0.05)										٠.						
1,05	×		Ξ	1	٠		1.4	_			1.5	6			. 95		
Humic acid and fertilizers on N uptake (kg ha ⁻¹) by rice in Inceptisol Tillering Til	S		3.0	8			2.6	2			22	4			7.5		
Humic acid and fertilizers on N uptake (kg ha¹) by rice in Inceptisol Tillering Tillering Tillering Mi, Mi, Mi, Mi, Mean Mi, Mi, Mean Mi, Mi, Mean Mi,	M at S		Ξ.	55	Ĭ,		3.8	0			45	0			153	2	
Grain Straw M, M, M, Mean M, M, M, 22.0 57.1 62.7 47.3 15.7 48.9 51.8 24.0 62.5 67.9 51.5 19.0 55.5 60.0 24.0 62.5 67.9 51.5 19.0 55.5 60.0 25.9 67.3 71.7 54.9 21.6 62.2 62.6 27.7 71.5 74.0 57.7 23.9 68.2 70.2 26.3 67.6 72.3 55.4 22.4 62.7 65.3 26.6 64.4 69.2 53.4 21.4 60.5 62.1 27.5 69.0 73.4 56.6 23.1 65.7 68.6 27.5 69.0 73.4 56.6 23.1 65.7 68.6 26.1 66.7 71.1 54.6 21.6 62.2 64.3 27.5 69.0 73.4 56.6 23.1 65.7 68.5 26.1 66.7 71.1 54.6 21.6 62.2 64.3 27.5 29 21.6 66.2 64.3 44.2 28.4	S at M	Ĉ.	2	20	*		3.5	0			42	0	1		13.0	4	
Tillering Flowering Grain Grain Straw M ₁ M ₂ M ₃ Mean M ₁ M ₂ M ₃ Mean M ₁ M ₂ M ₃ Mean M ₁ M ₃ Mean M ₁ M ₂ M ₃ Mean M ₁ M ₃ Mean M ₂ M ₃ M ₃ Mean M ₁ M ₃ Mean M ₁ M ₃ Mean M ₁ M ₃ Mean M ₂ M ₃ Mean M ₁ M ₃ Mean M ₁ M ₃ Mean M ₂ M ₃ Mean M ₁ M ₃ Mean M ₁ M ₃ Mean M ₁ M ₃ Mean M ₂ M ₃ Mean M ₁ M ₃ Mean M ₁ M ₃ Mean M ₂ M ₃ Mean M ₁ M ₃ Mean M ₂ M ₃ Mean M ₁ M ₃ Mean M ₂ M ₃ Ma ₃ M	Table 2. Hun	nic acid	and fer	tilizers	dn N no	take (kg	ha-1) by	rice in 1	nceptisol	ا تيار						,	
M ₁ M ₂ M ₃ Mean M ₁ M ₂ M ₃ Mean M ₁ M ₃ Mean M ₂ M ₃ Mean M ₃ Mean M ₂ M	Trantmonte		Til	lering			Flower	ring			Gra	in			S	traw	
10.8 21.5 25.0 19.1 26.8 64.7 67.6 53.0 22.0 57.1 62.7 47.3 15.7 48.9 51.8 11.7 23.1 26.3 20.4 28.6 69.0 70.5 56.0 24.0 62.5 67.9 51.5 19.0 55.5 60.0 12.4 24.4 27.6 21.5 29.8 73.5 73.7 59.0 25.9 67.3 71.7 54.9 21.6 62.2 62.6 13.4 26.1 29.4 23.0 76.1 76.3 61.1 27.7 71.5 74.0 57.7 23.9 68.2 70.2 13.4 26.1 29.4 23.0 73.4 74.3 59.2 26.3 67.6 72.3 55.4 22.4 62.7 65.3 12.2 24.2 27.4 21.3 30.0 73.4 74.3 59.2 26.6 64.4 69.2 53.4 21.4 60.5 62.1 12.5 24.7 27.9 21.7 30.7 75.5 75.7 60.7 27.5 60.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 22.8		Σ			Mean	Σ	Z,	Σ,	Mean	X.	Σ̈́	χ̈	Mean	×	Σ̈́	ž,	Mean
11.7 23.1 26.3 20.4 28.6 69.0 70.5 56.0 24.0 62.5 67.9 51.5 19.0 55.5 60.0 12.4 24.4 27.6 21.5 29.8 73.5 73.7 59.0 25.9 67.3 71.7 54.9 21.6 62.2 62.6 13.0 25.3 28.5 22.3 30.9 76.1 76.3 61.1 27.7 71.5 74.0 57.7 23.9 68.2 70.2 13.4 26.1 29.4 23.0 32.1 78.7 79.0 63.3 29.0 73.9 77.3 60.1 25.8 73.5 73.5 12.2 24.2 27.4 21.3 30.0 73.4 74.3 59.2 26.3 67.6 72.3 55.4 22.4 62.7 65.3 12.3 24.7 27.9 21.7 30.7 75.5 75.7 60.7 27.5 69.0 73.4 56.6 23.1 65.7 68.6 12.3 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 12.3 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 13.0 22.8 22.8 22.8 22.8 13.0 22.8 22.8 22.8 13.0 22.8 22.8 22.8 14.0 22.8 22.8 15.0 22.8 22.8 22.8 15.0 22.8 22.8 16.0 22.8 22.8 17.0 22.8 22.8 17.0 22.9 22.8 17.0 22.9 22.8 17.0 22.9 22.8 17.0 22.9 22.8 17.0 22.9 22.8 17.0 22.9 22.8 17.0 22.8 22.9 22.0 23.1 23.8 23.0 23.1 23.8 24.0 24.0 23.1 23.8 25.0 25.1 24.0 23.1 25.0 25.1 25.1 25.0 25.1 25.1 25.0 25.1 25.1 25.0 25.1	s,	10.8	21.5	25.0	161	26.8	64.7	97.9	53.0	22.0	57.1	62.7	47.3	15.7	48.9	51.8	38.8
124 244 276 215 298 735 73.7 590 25.9 67.3 71.7 54.9 21.6 62.2 62.6 130 25.3 28.5 22.3 30.9 76.1 76.3 61.1 27.7 71.5 74.0 57.7 23.9 68.2 70.2 134 26.1 29.4 23.0 32.1 78.7 79.0 63.3 29.0 73.9 77.3 60.1 25.8 73.9 73.5 122 24.2 27.4 21.3 30.0 73.4 74.3 59.2 26.3 67.6 72.3 55.4 22.4 62.7 65.3 123 24.1 27.4 21.3 29.8 72.7 75.7 60.7 27.5 69.0 73.4 56.6 23.1 65.7 68.6 124 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 125 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 126 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 126 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 127 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 128 24.1 27.4 21.3 29.8 72.7 73.8 73.1 73.8 73.1 73.8 73.1 73.8 129 24.1 24.6 24.6 24.6 24.6 24.6 24.6 129 24.6 24.6 24.6 24.6 24.6 24.6 24.6 129 24.6 24.6 24.6 24.6 24.6 24.6 24.6 129 24.6 24.6 24.6 24.6 24.6 24.6 129 24.6 24.6 24.6 24.6 24.6 24.6 120 24.6 24.6 24.6 24.6 24.6 24.6 130 24.6 24.6 24.6 24.6 24.6 24.6 250 24.6 24.6 24.6 24.6 24.6 24.6 250 24.6 24.6 24.6 24.6 24.6 24.6 250 24.6 24.6 24.6 24.6 24.6 24.6 24.6 250 250 250 24.6 24.6 24.6 24.6 24.6 250	Ś	11.7	23.1	263	20.4	28.6	69.0	70.5	56.0	24.0	62.5	61.9	51.5	19.0	55.5	0.09	4.8
13.0 25.3 28.5 22.3 30.9 76.1 76.3 61.1 27.7 71.5 74.0 57.7 23.9 68.2 70.2 13.4 26.1 29.4 23.0 32.1 78.7 79.0 63.3 29.0 73.9 77.3 60.1 25.8 73.9 73.5 12.2 24.2 27.4 21.3 30.0 73.4 74.3 59.2 26.3 67.6 72.3 55.4 22.4 62.7 65.3 12.3 24.3 27.9 21.7 30.7 75.5 75.7 60.7 27.5 69.0 73.4 56.6 23.1 65.7 68.6 12.5 24.7 27.9 21.7 30.7 75.5 75.7 60.7 27.5 69.0 73.4 56.6 23.1 65.7 68.6 12.5 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 13.0 12.0 22.0 22.0 22.0 13.0 22.0 22.0 22.0 13.0 22.0 22.0 22.0 14.0 22.0 22.0 22.0 15.0 22.0 22.0 22.0 17.0 22.0 22.0 22.0 18.0 22.0 22.0 22.0 19.0 22.0 22.0 22.0 10.0	's'	12.4	24.4	27.6	21.5	29.8	73.5	73.7	29.0	25.9	67.3	711.7	54.9	21.6	622	62.6	48.8
13.4 26.1 29.4 23.0 32.1 78.7 79.0 63.3 29.0 73.9 77.3 60.1 25.8 73.9 73.5 12.2 24.2 27.4 21.3 30.0 73.4 74.3 59.2 26.3 67.6 72.3 55.4 22.4 62.7 65.3 12.3 24.7 27.9 21.7 30.7 75.5 75.7 60.7 27.5 69.0 73.4 56.6 23.1 65.7 68.6 12.5 24.7 27.9 21.7 30.7 75.5 75.7 60.7 27.5 69.0 73.4 56.6 23.1 65.7 68.6 12.3 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 12.3 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 13.0 12.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 14.2 24.5 24.5 24.5 24.5 24.5 15.0 24.5 24.5 24.5 24.5 16.0 24.5 24.5 24.5 24.5 17.1 24.6 24.5 24.5 18.0 24.5 24.5 24.5 19.0 24.5 24.5 24.5 19.0 24.5 24.5 24.5 10.0 24.5 24.5 10.0 24.5 24.5 10.0 24.5 24.5 10.0 24.5 24.5 10.0 24.5 24.5 10.0 24.5 24.5 10.0 24.5 24.5 25.0 24.5 25.0 24.5 24.5 25.0 25.5 25.0 25	S,	13.0	253	28.5	22.3	30.9	76.1	76.3	61.1	27.7	71.5	74.0	57.7	23.9	682	702	7.
12.2 24.2 27.4 21.3 30.0 73.4 74.3 59.2 26.3 67.6 72.3 55.4 22.4 62.7 65.3 12.3 23.8 26.8 21.0 29.1 70.8 72.9 57.6 26.6 64.4 69.2 53.4 21.4 60.5 62.1 12.5 24.7 27.9 21.7 30.7 75.5 75.7 60.7 27.5 69.0 73.4 56.6 23.1 65.7 68.6 12.3 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 64.3 64.3 65.7 64.3 65.7 64.3 65.7 64.3 65.7 64.3 65.7 64.3 65.7	Š.	13.4	26.1	29.4	230	32.1	78.7	79.0	63.3	29.0	73.9	77.3	60.1	25.8	73.9	73.5	57.7
12.3 23.8 26.8 21.0 29.1 70.8 72.9 57.6 26.6 64.4 692 53.4 21.4 60.5 62.1 12.5 24.7 27.9 21.7 60.7 27.5 69.0 73.4 56.6 23.1 65.7 68.6 12.3 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 10.5) 12.3 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 10.5 10.5 11.0 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	, s	12.2	242	27.4	213	30.0	73.4	743	592	26.3	97.9	72.3	55.4	22.4	62.7	65.3	50.1
12.5 24.7 27.9 21.7 30.7 75.5 75.7 60.7 27.5 69.0 73.4 56.6 23.1 65.7 68.6 12.3 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	S.	123	23.8	26.8	21.0	29.1	70.8	72.9	27.6	26.6	64.4	692	53.4	21.4	60.5	62.1	48.0
12.3 24.1 27.4 21.3 29.8 72.7 73.8 58.7 26.1 66.7 71.1 54.6 21.6 62.2 64.3 1.0 3.0 3.28 0.9 2.8 2.8 1.9 4.6 3.4 4.2 1.0 3.0 3.0 3.28 2.1 2.1 2.88 1.9 3.4 3.4 4.42 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	Š,	12.5	24.7	27.9	21.7	30.7	75.5	75.7	60.7	27.5	0.69	73.4	999	23.1	65.7	989	52.5
1.0 3.0 3.28 2.8 2.8 2.1 2.88 2.8 4.42 1.9 4.42 3.4 4.42 3.26	Mean	123	24.1	27.4	213	29.8	727	73.8	58.7	26.1	299	71.1	54.6	21.6	622	64.3	49.4
12 09 28 28 21 29 46 34 1.7 5.4	CD(P=0.05)																
1.9 2.8 1.9 4.6 3.4 1.7 5.4 2.9	×			7			=	0		-	3.	6			328	~	
1.9 1.7 5.4 S.4 2.9	S		0	0			7	8			2.	ني			2.88	~	
L.7 S.4 MERICAL 29	M at S		, i	6,1			4,	9				-			442	011	
	S at M			.7			ń	4	ジー	210	1	0			326		

3.7 2.1 2.9 2.9 2.9

6
Ē
K
.5
by rice in A
á
÷
ha
uptake (kg ha-1)
ė
ta
5
ПР
0
zer
fertilizers
and fo
acid
umic
H.
e :
ap

		TIE	Tillering			Flowering				Grain	_			S	Straw	
reatments	M	M,	M,	Mean	×	M,	Z,	Mean	×	M	Μ̈́	Mean	×	ĭ.	×	Mean
S,	134	2.73	296	234	531	11.21	11.74	9.42	2.18	70'6	9.41	689	152	7.58	7.88	7.66
S.	1.45	2.30	3.09	2.48	2.67	11.73	12.32	9.30	2.52	9.60	986	733	2.03	8.19	825	6.16
S.	133	3.05	3.19	259	10.9	12.15	12.75	10,30	2.74	10.02	10.13	7.63	231	8.67	8.71	959
S.	197	3.16	325	2.67	626	12.47	13.05	10.60	294	10.26	10.44	7.88	252	9.13	937	7.01
Š,	1.66	3.19	327	2.70	6.55	12.86	13.31	10.91	3.06	10.47	10.67	8.07	270	6.67	957	731
Š,	1.48	2.98	3.14	2.53	6.02	12.17	12.76	10.31	2.62	18.6	10.02	7.49	2.14	8.79	883	6.58
ຶ່ນ	143	299	3.10	251	620	12.29	12.86	10.45	274	77.6	000	740	22	22	198	639
, S	3	3.00	3.20	2.58	630	12.57	13.12	10.67	297	10.05	10.15	77	246	800	100	685
Mean	150	3.00	3.15	2.55	6.04	12.18	12.74	10.32	2.72	9.88	10.08	7.56	224	8.73	8.78	658
CD (P=0.05)									ļ.			N.		1 800		ř E
M		0.0	5		,	.02	-			0.18	~			0.36	· C	
S		0				0.4	•			0.40				0.4		
M at S		0	6			SZ	دد (Z	222			Z		
S at M		070	2			*:										
Table 4. Humic acid and fertilizers on P uptake (kg ha-1) by rice in Inceptisol	nic acid	and fer	tilizers	on P upt	ake (kg	ha-¹) by 1	ice in Ir	ıceptisol	:	. !				13		
Treatmente		Til.	Tillering			Flowering	ing			Grain	u			3 2	Straw	
reading the	ĭ	M,	ñ	Mean	M.	ĭ	Ã	Mean	Z.	M	Ä	Mean	X,	ŭ	X,	Mean
s'	158	3.12	3.64	2.78	5.40	12.98	13.69	10.69	5.03	12.94	13.43	10.46	3.05	8.86	934	7.08
S,	1.70	331	3.80	294	2.68	13.43	14.19	11.10	5.32	13.74	14.04	11.03	336	17.6	1024	1.11
'S'	1.79	3.46	3.92	3.06	5.87	13.90	14.56	1.4	557	14.22	14.51	11.43	3.72	10.37	10.86	832
'S'	1.87	358	4.05	3.17	6.05	14.23	14.87	11.72	5.77	14.54	14.91	11.74	4.06	11.05	11.47	8.86
, Š	192	3.68	4.19	326	6.17	14.46	15.18	11.94	5.94	14.81	15.14	11.96	434	11.72	11.83	930
Š	1.71	335	3.81	2.96	5.90	13.78	14.63	11.43	5.49	14.02	1427	11.26	3.64	10.02	10.85	8.17
S,	1.76	3.40	3.84	3.00	5.81	13.67	-14.40	1129	5.75	14.00	1420	11.32	3.62	666	10.63	8.08
S,	1.78	3.44	3.89	3.04	594	13.98	14.83	11.58	5.70	14.31	14.61	11.54	3.88	10.56	11.20	855
Mean	1.76	3.42	3.89	3.03	5.85	13.80	14.54	11.40	5.57	14.07	14.39	11.34	3.71	10.28	10.80	827
CD (P=0.05)		*								,						is C
Σv		0.49	6 -			0.11				0.71				0.54	A A	
M at C						מ מ				ה ל כ	۷,			3 8	0 0	
SatM		200				0.0	.			0.0	•			3 5	200	
		1				2.0				5		1		200	0	

ir short duration variety 120:38:38 kg N, and K per hectare and for medium duration triety 150:50:50 kg N, P and K per hectare. he treatments comprised of three main plot catments viz. 0 (M₁), 75 (M₂) and 100 (M₃) ar cent NPK fertilizer and eight sub plot natments viz. 0 (S₁), 10 (S₂), 20 (S₃), 30 and 40 (S_s) kg HA had and 10 kg HA combined with foliar spray of 0.1% HA), 10 kg HA ha-1 combined root dipping : 0.3% HA (S₂) and 10 kg HA ha⁻¹ combined ath foliar spray of HA and root dipping of A (S_g). The foliar spray was given during :lering stage of rice and the root dipping ne by dipping the roots of rice seedlings the 0.3% HA solution for 30 minutes. The ant samples were drawn at tillering and flowering ige of rice. The grain and straw samples ere drawn during harvest stage and the N. and K uptake were calculated by multiplying trient content with respective dry matter eduction.

lesults and Discussion

The nutrient uptake of rice as influenced of the application of NPK fertilizers and HA has estimated at tillering, flowering and at breest stages of the rice crop and the uptake N, P and K nutrients were determined in bth Alfisol and Inceptisol.

litrogen uptake

The data pertaining to the N uptake at efferent growth stages in Alfisol by short duration ariety are given in Table 1. At tillering stage, in N uptake was increased significantly due NPK fertilizer treatment. The M₃, M₂ and I₁ recorded 15.99, 14.79 and 6.58 kg in 10 f N uptake and the per cent increase recorded by M₂ and M₃ over M₁ were 58.8 and 55.5. In HA treatments, the S₅ recorded 14.26 kg in 10 f N uptake, which was on par with S₄ 13.51 kg ha⁻¹). The treatments S₆ and S₈ recorded 2.57 and 13.13 kg ha⁻¹ of N uptake and 1 was followed by S₇ (12.29 kg ha⁻¹). Again the S₈ and S₄ were comparable. The range of N uptake (10.87 to 11.63 kg ha⁻¹) recorded

by NPK fertilizer treatment was less than that recorded by NPK fertiliser with HA (14.26 to 17.82 kg ha⁻¹).

At flowering stage, the fertilizer treatment M₃ recorded significantly the highest N uptake of 53.45 kg ha⁻¹ than M₂ (51.08 kg ha⁻¹) and M₁ (20.81 kg ha⁻¹). Among the HA treatments, the highest N uptake of 45.79 kg ha⁻¹ was recorded in S₅ and it was followed by S₄ (44.12 kg ha⁻¹) and S₃ (42.29 kg ha⁻¹). Among S₆, S₇ and S₈, the treatment S₈ recorded the highest N uptake of 44.63 kg ha⁻¹ and it was followed by S₇ (43.00 kg ha⁻¹) and S₆ (42.87 kg ha⁻¹). In interaction, the application of NPK fertilizer recorded 36.90 to 44.57 kg ha⁻¹ of N uptake than NPK fertilizer with HA (47.8 to 57.24 kg ha⁻¹).

At harvest, the N uptake was calculated both in grain and straw samples. In the grain, the per cent increase recorded by M, and M, over M, were 73.4 and 72.8. Among the HA treatments, S, recorded 46.17 kg hard of N uptake. This was on par with S, (44.61 kg ha⁻¹), which was followed by S₃ (42.54 kg ha-1). The treaments S₅, S₈ and S₄ were comparable. The per cent increase recorded by S, over S_{g} , S_{d} and S_{h} were 4.4, 3.4 and 7.9. The interaction of NPK fertilizer and HA on N uptake in grain was significant. The NPK fertilizer combined with HA recorded higher range of N uptake (51.92 to 60.66 kg ha⁻¹) than NPK fertilizer (40.91 to 42.82 kg ha⁻¹). In straw samples, the N uptake performed similar to that of grain samples.

The data regarding the N uptake in Inceptisol are given in Table 2. At tillering stage, N uptake was found to be higher in NPK fertilizer applied treatment than no fertilizer. The treatment M₃ recorded significantly higher N uptake of 27.4 kg ha⁻¹ than M₂ (24.1 kg ha⁻¹) and M₄ (12.3 kg ha⁻¹). In HA treatments, the N uptake recorded in S₅ (23.0 kg ha⁻¹) and S₄ (22.3 kg ha⁻¹) were statistically on par with each other and followed by S₃ (21.5 kg ha⁻¹) and

Table 5. Humic acid and fertilizers on K uptake (kg ha⁻¹) by rice in Alfisol

Transmite		Til	Fillering		d	Flowe	vering		i j	Grain	ii				Straw	
Healingins	M	M ₂	M,	Mean	M.	M,	M,	Mean	M	M ₂	M,	Mean	M	M,	M,	Mean
S,	620	12.08	12.99	10.42	17.24	35.88	37.07	30.06	2.13	824	8.67	635	16.40	62.26	64.38	47.68
s,	999	12.60	13,35	10.85	17.95	37.04	37.81	30.93	2.47	8.70	9.13	6.77	18.35	63.91	65.95	49.40
S	6.85	13.07	13.65	11.19	18.63	37.98	38.75	31.79	2.70	9.15	9.49	7.11	19.94	65.37	88.99	50.73
S,	7.14	13.40	13.74	11.43	19.27	38.86	39.46	32,53	2.93	9.54	9.80	7.42	20.85	86.99	68.09	51.97
Š,	727	13.48	14.01	11.59	18.61	39.50	40.11	33,14	3.03	9.80	10.02	7.62	21.69	68.70	6833	52.91
Š,	629	12.70	13.30	10.86	18.67	37.89	38.72	31.76	2.64	921	9.47	7.11	18.88	66.13	67.45	50.82
Š,	6.55	12.93	13.49	10.99	19.07	38.38	39.07	32.17	2.71	90.6	931	7.02	19.82	81.99	67.34	51.11
, °	6.84	13.02	13.58	11.15	19.48	39.00	39.58	32.68	3.03	936	9.48	729	21.44	67.72	68.54	52.56
Mean	6.75	12.91	13.51	11.06	18.76	38.07	38.82	31.88	2.71	9.13	9,42	7.09	19.61	65.91	67.12	50.90
CD (P=0.05)																
Σ		0.12	2			0.13	3			0.19	6			1.43	m	
S		ŏ	9			7				03	9			2.4	2	
M at S S at M		Z	S			z	S			Ž	ro			ž		

Table 6. Humic acid and fertilizers on K uptake (kg ha-1) by rice in Inceptisol

Nat State Nat			Ţ	Tillering			Flowering	ring			Grain	in			0,	Straw	
16.52 18.93 14.79 19.84 45.94 46.76 37.51 4.73 12.32 12.81 995 31.49 77.02 78.41 17.19 19.47 15.36 20.51 47.01 47.82 38.45 5.02 13.07 13.50 10.53 32.34 79.91 81.35 17.72 19.85 15.77 20.95 47.93 48.49 39.12 5.26 13.46 13.84 10.85 33.23 79.91 81.35 18.10 20.26 16.12 21.26 48.45 49.03 39.18 5.46 13.77 14.17 11.14 34.31 82.59 18.40 20.54 16.39 21.59 48.95 49.19 39.91 5.59 14.46 11.37 34.91 82.59 17.54 19.68 15.67 20.78 48.21 38.99 5.27 13.45 11.37 34.46 83.14 84.44 17.75 19.80 15.67 20.85 47.82 <th>reauments</th> <th>Ä,</th> <th>M</th> <th>M,</th> <th>Mean</th> <th>M.</th> <th>M</th> <th>M,</th> <th>Mean</th> <th>M</th> <th>M₂</th> <th>M,</th> <th>Mean</th> <th>M,</th> <th>M,</th> <th>M,</th> <th>Mean</th>	reauments	Ä,	M	M,	Mean	M.	M	M,	Mean	M	M ₂	M,	Mean	M,	M,	M,	Mean
17.19 19.47 15.36 20.51 47.01 47.82 38.45 5.02 13.07 13.50 10.53 32.34 79.91 81.35 17.72 19.85 15.77 20.95 47.93 48.49 39.12 526 13.46 13.84 10.85 33.27 81.29 82.59 18.10 20.26 16.12 21.26 48.45 49.03 39.58 5.48 13.77 14.17 11.14 34.31 82.86 84.40 18.40 20.54 16.39 21.59 48.95 49.19 39.91 5.59 14.06 14.45 11.37 34.91 84.81 85.25 17.34 9.58 15.47 13.78 10.82 33.52 80.74 83.32 17.75 19.80 15.78 21.06 48.24 48.62 39.37 54.4 13.76 10.78 34.10 81.36 82.58 17.78 19.80 15.67 20.85 47.82 48.31 38.99 </td <td>s,</td> <td>16'8</td> <td>16.52</td> <td>18.93</td> <td>14.79</td> <td>19.84</td> <td>45.94</td> <td>46.76</td> <td>37.51</td> <td>4.73</td> <td>12.32</td> <td>12.81</td> <td>9.95</td> <td>31.49</td> <td>77.02</td> <td>78.41</td> <td>62.31</td>	s,	16'8	16.52	18.93	14.79	19.84	45.94	46.76	37.51	4.73	12.32	12.81	9.95	31.49	77.02	78.41	62.31
17.72 19.85 15.77 20.95 47.93 48.49 39.12 52.6 13.46 13.84 10.85 33.27 81.29 82.59 18.10 20.26 16.12 21.26 48.45 49.03 39.58 5.48 13.77 14.17 11.14 34.31 82.86 84.40 18.10 20.26 16.12 21.26 48.45 49.03 39.58 5.48 13.77 14.17 11.14 34.31 82.86 84.40 17.34 9.58 15.47 20.79 47.85 48.38 39.01 5.21 13.47 13.78 10.82 33.52 80.74 83.32 17.54 19.68 15.68 20.80 47.96 48.21 38.99 5.27 13.45 13.63 10.78 33.14 84.44 17.58 19.76 15.67 20.85 47.82 48.31 38.99 5.25 13.41 13.76 10.81 33.55 81.39 82.79 17.58 </td <td>Š</td> <td>9.40</td> <td>17.19</td> <td>19.47</td> <td>15.36</td> <td>20.51</td> <td>47.01</td> <td>47.82</td> <td>38.45</td> <td>5.02</td> <td>13.07</td> <td>13.50</td> <td>10.53</td> <td>32,34</td> <td>19.91</td> <td>81.35</td> <td>64.53</td>	Š	9.40	17.19	19.47	15.36	20.51	47.01	47.82	38.45	5.02	13.07	13.50	10.53	32,34	19.91	81.35	64.53
18.10 2026 16.12 21.26 48.45 49.03 39.58 5.48 13.77 14.17 11.14 34.31 82.86 84.40 18.40 20.54 16.39 21.59 48.95 49.19 39.91 5.59 14.06 14.45 11.37 34.91 84.81 85.25 17.34 9.58 15.47 20.79 47.85 48.31 38.99 5.27 13.47 13.78 10.82 33.52 80.74 83.32 17.73 19.80 15.78 20.86 48.44 48.62 39.37 5.44 13.67 13.93 11.01 34.46 83.14 84.44 17.58 19.76 15.67 20.85 47.82 48.31 38.99 5.25 13.41 13.76 10.81 33.55 81.39 82.79 0.86 0.76 0.78 0.79 0.78 0.79 0.78 0.98 0.79 0.99	'S	9.75	17.72	19.85	15.77	20.95	47.93	48.49	39.12	526	13.46	13.84	10.85	33.27	8129	82.59	65.72
18.40 20.54 16.39 21.59 48.95 49.19 39.91 559 14.06 14.45 11.37 34.91 84.81 85.25 17.34 9.58 15.47 20.79 47.85 48.38 39.01 521 13.47 13.78 10.82 33.52 80.74 83.32 17.54 19.68 15.68 20.80 47.96 48.21 38.99 527 13.45 13.63 10.78 34.10 81.36 82.58 17.73 19.80 15.78 21.06 48.44 48.62 39.37 5.44 13.67 13.93 11.01 34.46 83.14 84.44 17.58 19.76 15.67 20.85 47.82 48.31 38.99 5.25 13.41 13.76 10.81 33.55 81.39 82.79 0.86 0.66 0.70 0.78 0.79 0.78 0.79 0.99 0.78 0.78 0.78 0.78 0.78 0.79	, S	10.01	18.10	2026	16.12	21.26	48.45	49.03	39.58	5.48	13.77	14.17	11.14	34.31	82.86	84.40	67.19
17.34 9.58 15.47 20.79 47.85 48.38 39.01 5.21 13.47 13.78 10.82 33.52 80.74 83.32 17.64 19.68 15.68 20.80 47.96 48.21 38.99 5.27 13.45 13.63 10.78 34.10 81.36 82.58 17.73 19.80 15.78 21.06 48.44 48.62 39.37 5.44 13.67 13.93 11.01 34.46 83.14 84.44 17.58 19.76 15.67 20.85 47.82 48.31 38.99 5.25 13.41 13.76 10.81 33.55 81.39 82.79 0.86 0.66 0.68 0.70 0.78 0.79 0.79 0.79 0.98 0.78 0.78 0.78 0.78 0.38 0.99	`v	10.22	18.40	20.54	16.39	21.59	48.95	49.19	39.91	5.59	14.06	14.45	11.37	34.91	84.81	85.25	68.32
17.64 19.68 15.68 20.80 47.96 48.21 38.99 5.27 13.45 13.63 10.78 34.10 81.36 82.58 17.73 19.80 15.78 21.06 48.44 48.62 39.37 5.44 13.67 13.93 11.01 34.46 83.14 84.44 17.58 19.76 15.67 20.85 47.82 48.31 38.99 5.25 13.41 13.76 10.81 33.55 81.39 82.79 0.86 0.66 0.68 0.68 0.78 0.79 0.79 0.79 0.79 0.79 0.99 0.78 0.78 0.78 0.78 0.38 0.38 0.90	'v,	9.48	17.34	958	15.47	20.79	47.85	48.38	39.01	521	13.47	13.78	10.82	33.52	80.74	83.32	65.86
17.73 19.80 15.78 21.06 48.44 48.62 39.37 5.44 13.67 13.93 11.01 34.46 83.14 84.44 17.58 19.76 15.67 20.85 47.82 48.31 38.99 5.25 13.41 13.76 10.81 33.55 81.39 82.79 17.58 19.76 15.67 20.85 0.46 0.72 0.73 0.58 0.58 0.75 0.76 0.70 0.74 1.60 0.90 0.78 0.78 0.78 0.38 0.90	°S'	9.73	17.64	19.68	15.68	20.80	47.96	48.21	38.99	527	13.45	13.63	10.78	34.10	81.36	82.58	66.01
17.58 19.76 15.67 20.85 47.82 48.31 38.99 5.25 13.41 13.76 10.81 33.55 81.39 82.79 0.86 0.68 0.68 0.72 0.38 0.98 0.75 0.70 0.79 0.78 0.59 0.78 0.78 0.38 0.90	S	9.80	17.73	19.80	15.78	21.06	48.44	48.62	39.37	5.44	13.67	13.93	11.01	34.46	83.14	8.4	67.35
0.46 0.72 1.52 0.58 0.98 0.70 0.78 0.98 0.90	Mean	99.6	17.58	19.76	15.67	20.85	47.82	48.31	38.99	525	13.41	13.76	10.81	33,55	81.39	82.79	16.59
0.46 0.72 0.68 0.38 0.70 0.74 0.78 0.38	CD (P=0.05)													,	171	-	
0.68 0.38 0.70 0.74 0.78 0.38	, W		30	95			0	9			0.7	2			1.5	2	
0.70 0.74 0.78 0.38	S		ŏ	,92			ŏ	88			03	8			0.5	8	
0.78	M at S		0	75			0	0			0.7	4			9:1	9	
	S at M		0	28			0	8			03	00		- (*	6.0	2	- 2

(20.4 kg ha⁻¹). The treatments S_8 (21.7 kg a⁻¹), S_6 (21.3 kg ha⁻¹) and S_7 21.0 kg a⁻¹) were comparable.

At flowering stage, the NPK fertilizer eatment M₃ recorded significantly the highest uptake of 73.8 kg ha⁻¹ and it was follwoed y M₂ and M₁ that recorded 72.7 and 29.8 g ha⁻¹ respectively. In HA treatments, the S₅ corded the highest N uptake of 63.3 kg a⁻¹ and it was on par with S₄ (61.1 kg a⁻¹) and followed by S₃ (59.0 kg ha⁻¹).

At harvest stage, the N uptake of grain and straw samples were determined. In the lain, M₃ recorded 71.1 kg ha⁻¹ of N uptake at that was significantly higher than that obtained M₂ (66.7 kg ha⁻¹) and M₁ (26.1 kg ha⁻¹). HA treatments, S₅ recorded the highest N ptake (60.1 kg ha⁻¹) and it was followed by (57.7 kg ha⁻¹). The S₈ recorded the highest l uptake of 56.6 kg ha⁻¹, which was followed y S₆ (55.4 kg ha⁻¹) and S₇ (53.4 kg ha⁻¹). The application of NPK fertilizer with HA ecorded higher N uptake in grain (62.5 to 7.3 kg ha⁻¹) than NPK fertilizer treatments 57.1 to 62.7 kg ha⁻¹).

In the straw, the fertilizer treatments M₃ and M₂ recorded 64.3 and 62.2 kg ha⁻¹ of 1 uptake, and they were on par with each other. The HA treatments S₅ recorded the higher 1 uptake of 57.7 kg ha⁻¹ and it was followed by S₄ (54.1 kg ha⁻¹). Among S₆, S₇ and S₈, he S₈ recorded 52.5 kg ha⁻¹ of N uptake and 1 was on par with S₆ (50.1 kg ha⁻¹).

The N uptake was increased by HA application. Significant increase was observed upto 20 kg ha⁻¹ for all stages in Alfisol. For nceptisol, the N uptake was found to increase with increase in HA dose at each critical stage of the rice growth. The highest uptake of nitrogen a grain and straw was found up to 40 kg IA ha⁻¹. The increased N uptake by the rice rop for HA application was attributed to better se efficiency of applied nitrogen fertilisers the presence of HA (Guminski, 1968). HA pplication would have sustained the flow of

ammonical nitrogen for longer period of time. When such N availability was coupled with enhanced activation of roots, it would have led to the better utilization of N by rice. This is in agreement with the findings of Govindasamy et al. (1989). According to Guminski (1968), HA application had a definite impact on the protein and nucleic acid synthesis, which indirectly indicated the increased uptake of various nutrient elements essentially N, K and Ca.

Phosphorus uptake

In Alfisol at tillering stage, M, recorded significantly increased P uptake of 3.15 kg ha-1 as compared to M, (3.00 kg ha-1) and M, (1.5 kg ha-1) (Table 3). In HA treatments, the P uptake recorded in S, (2.70 kg ha-1), S₄ (2.67 kg ha⁻¹) and S₃ (2.59 kg ha⁻¹) were statistically on par with each other. The treatments S_6 (2.53 kg ha⁻¹), S_7 (2.51 kg ha⁻¹) and S_8 (2.58 kg ha⁻¹) were comparable. The treatments S₅, S₄, S₅ and S₆ were also on par with each other. At flowering stage, M, recorded significantly the higher P uptake of 12.74 kg hard whereas M, and M, registered 12.18 and 6.04 kg hard of P uptake. In HA treatments, S, recorded the highest P uptake of 10.91 kg ha-1 and it was on par with S₄ (10.60 kg ha⁻¹), The application of NPK fertilizer with HA recorded the higher range of P uptake (11.37 to 13.31 kg ha⁻¹) than NPK fertilizer treatments, which registered only 11.21 to 11.74 kg hard.

At harvest the P uptake of grain and straw samples were calculated. In grain among the fertilizer treatments, M, recorded the highest P uptake of 10.08 kg hard and it was followed by M, (9.88 kg ha-1) and M, (2.72 kg ha-1). The application of NPK fertilizer with HA recorded higher range of P uptake (9.60 to 10.67 kg ha⁻¹) than NPK fertilizer (9.07 to 9.41 kg ha⁻¹). The interaction was found to be significant. In straw, per cent increase recorded by M3 and M2 over M1 were 74.5 and 74.3. Among the HA treatments, the S, recorded highest P uptake (7.31 kg ha⁻¹). Combination of NPK fertilizer and HA recorded higher range of P uptake of 8.19 to 9.57 kg hard than NPK fertilizer alone (7.58 to 7.88 kg ha-1).

The statistical scrutiny of the data showed that the uptake of P increased from tillering to flowering stage (Table 4) in Inceptisol. At tillering stage, P uptake was significantly increased by addition of fertilizer. The treatments M, and M, registered 3.89 and 3.42 kg hard of P uptake and they were on par with each other, while the M, recorded only 76 kg hard of P uptake. In the HA treatments, the S, recorded 3.26 kg ha⁻¹ of P uptake which was on par with S₄ (3.17 kg ha⁻¹). The treatment S₈ (3.04 kg ha-1), S, (3.00 kg ha-1), S₆ (2.96 kg ha-1) and S, (2.94 kg ha') were comparable. The NPK fertilizer with HA recorded higher P uptake (3.31 to 4.19 kg hard) than NPK fertilizer treatments alone (3.12 to 3.64 kg ha-1).

At flowering stage, the higher P uptake of 14.54 kg ha-1 was recorded in M, than M, (13.80 kg ha⁻¹) and M, (5.85 kg ha⁻¹). In the HA treatments, the S₅, S₄, S₅, S₆ and S, were found to be comparable. At harvest stage, the P uptake of grain and straw samples were determined. The P uptake was higher in grain than straw. In grain, the M, and M, recorded 14.39 and 14.07 kg ha-1 of P uptake and they were statistically on par with each other. Among the HA treatments, the S, recorded 11.96 kg ha-1 of P uptake and it was on par with S₄ (11.74 kg ha⁻¹) and followed by S₅ (11.43 kg ha-1). The treatments S_s (11.54 kg ha-1), S₇ - (11.32 kg ha-1) and S₆ (11.26 kg ha-1) were on par with each other. The application of NPK integrated with HA recorded higher P uptake of 13.74 to 15.14 kg hard than NPK fertilizer treatments (12.94 to 13.43 kg ha⁻¹). In the straw, between the fertilizer treatments, the M, and M, recorded 10.80 and 10.28 kg har of P uptake, which were comparable. In the HA treatments, S, recorded higher P uptake of 9.30 kg ha-1 and it was followed by S. (8.86 kg ha⁻¹) and S₁ (8.32 kg ha⁻¹). The NPK fertilizer integrated with HA recorded higher P uptake of 9.71 to 11.83 kg ha⁻¹ than NPK fertilizer (8.86 to 9.34 kg ha-1).

Humic acid application favourably influenced the P uptake of rice. The significant increase in P uptake was observed at 10 kg hal in all the growth stages of rice in Alfisol. But in Inceptisol, the trend was different. Significant increase in P uptake occurred at lower level of HA (10 kg HA ha-1) at tillering and as the growth of rice advanced, the P uptake was significant at higher levels of HA. In Alfisol, 10 kg of HA ha-1 itself would have mobilised enough of P to meet the crop need throughout its growth. Probably the rich native P would have contributed to P nutrition in the presence of 10 kg HA ha-1. In contrast in Inceptisol, more than 10 kg HA har would have needed to meet the P requirement of rice. The variations in the levels of HA to bring about the significant effect on P nutrition of rice might be attributed to the chemistry of soil towards P release. The results have clearly showed that, the dose of HA would differ in different soil types to produce marked effect on nutrition of crops. The increased F uptake was ascribed to the action of forming humo phospho complexes, which could be easily assimilable by plants (Szymanski, 1962) and this explains the more of P uptake by rice in the present study. Vaughan and Ord (1985) reported that, the higher P uptake by rice could be due to development of uptake capacity in plants through the stimulating effect of HA. In the presence of humates, the plants could use phosphate fertilizers fully at the humic molecules and the phosphate anion compete on an almost equal basis. Anion exchange phenomenon could be another reason for increasing P availability and higher P uptake by rice (Deb and Datta, 1967).

Potassium uptake

The data pertaining to K uptake in Alfisol are given in Table 5. At tillering stage, among the fertilizer treatments, the highest K uptake was recorded in M₃ (13.51 kg ha⁻¹). The M₂ and M₁ recorded 12.91 and 6.75 kg ha⁻¹ of K uptake. In the HA treatments, S₅ (11.59 kg ha⁻¹), S₄ (11.43 kg ha⁻¹) and S₃ (11.19 kg ha⁻¹) recorded comparable K. The per cent increase recorded by S₅ over S₃, S₄, S₆, S₇ and S₈ were 3.5, 1.4, 6.3, 5.2 and 3.8. The NPK fertilizer with HA recorded higher

uptake (12.6 to 14.01 kg ha⁻¹) than NPK tilizer alone (12.08 to 12.99 kg ha⁻¹).

At flowering stage, the per cent increase corded by M3 and M2 over M1 were 51.7 id 50.7. In HA treatments, S, recorded 33.14 t hal of K uptake and it was followed by i (32.53 kg ha-1) and S, (31.79 kg ha-1). he treatment S₈ (32.68 kg ha⁻¹), S₇ (32.17 t ha-1) and S₆ (31.76 kg ha-1) were on par ith each other. The per cent increase recorded Y S₅ over S₃, S₄, S₆, S₇ and S₈ were 4.1, 18, 4.2, 2.9 and 1.4. The NPK fertilizer recorded 5.88 to 37.07 kg ha-1 of K uptake, whereas le NPK fertilizer with HA recorded 37.04 40.11 kg ha-1. At harvest, the K uptake s estimated both in grain and straw. In the hin the NPK fertilizer treatment M3 recorded \$2 kg ha-1 of K uptake and it was significantly gher than that obtained in M, (9.13 kg ha and M, (2.71 kg ha-1). In HA treatments, , S₄ and S₃ recorded 7.62, 7.42 and 7.11 t had of K uptake respectively and they were h par with each other. Per cent increase recorded Y S, over S₄ and S₈ were 2.6 and 4.3. In taw, the per cent yield increased by M, and , over M, were 70.7 and 70.1. In the HA eatments, the S, (52.91 kg ha-1), S, (51.97 1 ha⁻¹), and S₂ (50.73 kg ha⁻¹) were on par ith each other.

The K uptake for different growth stages paddy in Inceptisol is given in Table 6. tillering stage, the M₃ registered significantly highest K uptake of 19.76 kg ha⁻¹ and was followed by M₂ (17.58 kg ha⁻¹) and (9.66 kg ha⁻¹). In the HA treatments, the (16.39 kg ha⁻¹), S₄ (16.12 kg ha⁻¹) and (15.77 kg ha⁻¹) were on par with each ser and S₃ was followed by S₂ (15.36 kg a⁻¹). The treatments S₃, S₄, S₅ and S₈ were sund to be comparable. The application of PK fertilizer with HA recorded higher K otake of 17.19 to 20.54 kg ha⁻¹ than NPK artilizer treatments (16.52 to 18.93 kg ha⁻¹).

At flowering stage, the uptake of K registered M₃ was significantly highest (48.31 kg ²¹) as against M₄ (47.82 kg ha⁻¹) and M₄

(20.85 kg ha⁻¹). In the HA treatments, the highest K uptake was recorded in S₅ (39.91 kg ha⁻¹), which was on par with S₄ (39.58 kg ha⁻¹) and followed by S₃ (39.12 kg ha⁻¹). The S₅, S₄ and S₈ were found to be comparable.

In the grain, uptake of K recorded in M₃ and M₂ were 13.76 and 13.41 kg ha⁻¹ and they were on par with each other. The M₁ recorded only 5.25 kg ha⁻¹ of K uptake. In the HA treatments, S₅ and S₄ recorded 11.37 and 11.14 kg ha⁻¹ of K uptake and the S₄ was followed by S₃ (10.85 kg ha⁻¹) and S₂ (10.53 kg ha⁻¹). The S₄, S₅ and S₈ were comparable. The application of NPK fertilizer combined with HA recorded higher K uptake (13.07 to 14.45 kg ha⁻¹) than NPK fertilizer treatments (12.32 to 12.81 kg ha⁻¹). In the straw, the NPK fertilizer combined with HA registered higher K uptake of 79.91 to 85.25 kg ha⁻¹ than NPK fertilizer (77.02 to 78.41 kg ha⁻¹).

Potassium uptake by rice was also marked due to HA application. The K uptake significantly increased upto 10 kg ha⁻¹ in both Alfisol and Inceptisol. Rice being a monocot it could have taken up more of K by virtue of its high root CEC (Tisdale et al. 1997), which was increased due to HA. The mobile nature of K and increase in the root volume would also have resulted in higher K uptake. The increased K content of the soil due to HA application would have led to more K absorption by rice.

A large increase of nutrient uptake was recorded for the application of HA upto 40 kg ha⁻¹. The increased nutrient availability by HA as evident from the literature would have resulted in better absorption and higher uptake of nutrients by rice. Thus HA influenced the nutrition and growth of plants in an indirect manner. HA might also influence the plant growth directly either through its effects on ion uptake or by more direct effects on the growth regulation of the plant (Vaughan and Linehan, 1976). The increased nutrient uptake due to HA would be attributed to the enhanced microbial activity and reduced nutrient losses in the soil. With increasing dose of HA from

0 to 40 kg ha-1, the uptake of N, P and K also increased.

At optimum level of HA, the roots were highly branched and this might have resulted an increase in surface area, which would have facilitated more efficient nutrient absorption (Mallikarjuna Rao et al. 1987). Tan and Nopamornbodi (1979) also reported similar results. Increased root volume, surface area and CEC together would have led to more nutrient uptake by providing better means for greater absorption. The mechanisms of root interception with soil nutrients is one of the ways in which crop could take nutrients. It was made possible when there was profuse root growth (Tisdale et al. 1997). The improved root growth of rice in the presenc of HA observed would have induced the large uptake of nutrients.

Conclusions

The results have highlighted that HA levels to bring out pronounced effect on rice nutrition would depend largely on soil type, rice variety and yield. In Alfisol, the significant effect on nutrient uptake by a short duration variety of rice was observed upto 20 kg ha⁻¹. However, in Inceptisol, the medium duration rice variety recorded significantly high amount of N, P and K uptake for the application of HA at a level higher than 20 kg ha⁻¹ especially as growth advanced towards maturity.

References

- Aso, S. and Sakai, J. (1963). Studies on the physiological effect of humic acid (Part 1). Uptake of humic acid by crop plants and its physiological effects. Soil Sci. Pl. Nutr. 9: 1-5.
- Bama, K.S. and Selvakumari, G. (2001). Effect of humic acid on growth, yield and nutrition of amaranthus. South Indian Hort. 49: 155-156.
- Deb, D.L. and Datta, N.P. (1967). Effect of association of ions on phosphorus retention in soils. II. Under variable anion concentrations. Pl. Soil, 26: 432-444.
- Govindasamy, R. and Chandrasekaran, S. (2002).

 Effect of graded levels of humic acid with and without N on the performance of lowland rice. In: National seminar on recent trends

- on the use of humic substances for sustainable agriculture, Annamalai University, Tami Nadu, p.5.
- Govindasamy, R., Chandrasekaran, S. and Nataraja, K. (1989). Influence of (lignite) humic action ammonia volatilization from urea. In Proc. National seminar on "humus acids agriculture". Annamalai University, Tami Nadu, pp.319-325.
- Guminski, S. (1968). Present day views of physiological effects induced in plan organisms by humic compounds. Soviet Sci. Sci. 9: 1250-1256.
- Jelanic, D.B., Hajdukovic, M. and Aleksic, Z. (1966)
 The influence of humic substances or phosphate utilization from labelled superphosphate. In: Report of FAO/IAEA proceedings. Pergamon Press, Oxford.
- Mallikarajunarao, M., Govindasamy, R. a.:
 Chandrasekaran, S. (1987). Effect of hum:
 acid on Sorghum vulgare var. CSH-9. Cu
 Sci. 56: 1273-1276.
- Mishra, B. and Srivastava, L.L. (1988). Physiologic properties of humic acids isolated from son major soil associations of Bihar. J. India. Soc. Soil Sci. 36: 83-89.
- Raina, J.N. and Goswami, K.P. (1988). Effect o fulvic acid and fulvates on the growth and nutrient uptake by maize plant. J. Indian Soc. Soil Sci. 36: 264-268.
- Saalbach, E. (1956). The influence of humic substances on the metabolism of plants. Sixtl Congress International Dela Science de Sol Paris, Rapports, pp.107-111.
- Szymanski (1962). Trans. Intl. Symp. Humus e planta, p.165.
- Tan, K.H. and Nopamornbodi, V. (1979). Effect of different levels of humic acids on nutrient content and growth of corn (Zea mays). Pl. Soil, 51: 283-287.
- Tisdale, S.L., Nelson, W.L., Beaton, J.D. and Havlin J.L. (1997). Soil fertility and fertilizers (5tl eds.) Prentice-Hall of India. Ltd., New Delhi
- Vaughan, D. and Linehan, D.J. (1976). The growtl of wheat plants in humic acid solutions unde axenic conditions. Pl. Soil, 44: 445-499
- Vaughan, D. and Ord, B.G. (1985). Soil organic matter-a perspective on its nature, extraction turn over and role in soil fertility. Soil organic matter and biological activity, pp.4-18, Junl Publishers, Werterland.

(Received: December 2002; Revised: September 2003