Judicious nutrient management for irrigated tomato in red loamy sand soil

V.P. DURAISAMI AND A.K. MANI

Regional Research Station, Tamil Nadu Agricultural University, Paiyur-635 1112, Tamil Nadu

Abstract: Field experiments were conducted to optimize the fertilizer schedule for tomato under irrigated condition in red loamy sand soil. The encouraging response of tomato to N and K could be well visualized with significantly higher fruit yield. Application of 80 - 60 - 40 kg N, P₂O₅ and K₂O ha⁻¹ was optimum in increasing the yield and uptake of tomato. The T.S.S was altered by P and K levels and not by the N levels. The acidity was found to be independent of nutrient levels. The soil available N varied markedly among the N levels while the P availability was influenced by P and K levels. The uptake of nutrients was markedly influenced by the N and K levels as compared to P fertilization.

Key words: Irrigated tomoto, Fertilizer, Yield, Uptake, Nutrients, Acidity

Introduction

Vegetable cultivation is gaining importance in the recent years due to more returns per unit input cost. In the north western zone of Tamil Nadu, among the different vegetable crops, tomato occupies a larger area both under irrigated and rainfed conditions. However, the productivity is far below the average owing to many soil constraints. The soils of tomato growing area is coarse textured associated with poor fertility status. Under the above conditions, the yield is mainly determined by fertilizer management rather than any other factor. Any attempt made to improve the fertility curr productivity of these soils would pave way for better prosperity of the tomato growers of the zone. This study is focused on the fertilizer management for tomato under irrigated condition in red soils of North Western Zone of Tamil Nadu.

Materials and Methods

Field experiments were carried out in June - July season during 1994 - 97 in a red loamy sand soil (Typic Ustorthent). The soil of the experimental field was having EC

Table 1. Effect of N, P and K on fruit yield (t hail) of tomato

Level	P_0			*	P ₆₀			14-		
	, K _o	K ₄₀	K ₈₀	K _o	K ₄₀	K ₈₀	K ₀	K ₄₀	. K _{so}	Mean
N ₀ N ₄₀ N ₈₀ N ₁₂₀ Mean	26.9	29.4	30.2	32.0	37.2	27.8	19.5	31.6	13.4	27.6
N_40	37.8	34.3	28.7	36.1	28.9	18.9	39.7	34.9	34.9	32.8
N ₈₀	31.7	37.5	39.7	30.8	29.9	38.7	49.0	34.0	49.5	38.0
N ₁₂₀	29.6	35.9	28.9	30.8	32.8	36.0	37.3	31.8	33.4	32.9
Mean	25.2	28.9	25.7	25.7	27.2	26.3	25.0	25.0	26.2	
	N - 1				P	- Mean			K - Mea	n
N ₀ 27.6	N ₄₀ 32.8	N ₈₀ 38.0	N ₁₂₀ 32.9	2	P ₀ 26.1	P ₆₀ 26.4	P ₁₂₀ 26.2	K ₀ 25.3	K ₄₀ 27.3	K _{so} 26.1
Source	N 05) 1.5	N P K 05) 1.5 NS 1.3					N x K P x K		NxPx	ĸ
CD (P=0	.05) 1.5			2.6		2.6 NS		S NS		

Table 2. Effect of N, P and K on T.S.S. (briggs) of tomato

Levei .	P _o			P_{co}				P ₁₂₀		
	K ₀	K.	K ₈₀	K	K ₄₀	K	. K ₀	K ₄₀	K ₈₀	Mean
N ₀ N ₄₀ N ₂₀ N ₁₂₀ Mean	3.6	3.9	3.6	4.3	4.4	4	.8 4.1	4.4	4.7	4.20
N ₄₀	3.8	3.6	4.6	3.0	4.4		.1 404		4.5	4.03
N ₈₀	4.0	3.7	4.2	3.8	4.6		.6 3.8		4.1	4.06
N ₁₂₀	3.8	3.8	3.8	4.2	4.8		.3 4.2		4.3	4.02
Mean	3.80	3.75	4.05	3.83			45 4.1		4.40	
		Mean			P	- Mean			K - Mea	n:
N ₀ 4.20	N ₄₀ 4.03	N _{so} 4.06	N ₁₂₀ 4.02		P ₀ 3.87	P ₆₀ 4.27	P ₁₂₀ 4.10	K 3.92	K ₄₀ 4.02	K ₈₀ 4.30
Source	_16	N	P	K	Νx	P	NxK	PxK	NxF	хK
CD (P=0.0)5)	NS	0.16	01.8	NS		NS	NS	N	S .

Table 3. Effect of N, P and K on the acidity (%) of tomato

$P_{\mathfrak{n}}$			-	P ₆₀			P ₁₂₀		
K _o	K ₄₀	K ₈₀	K	K ₄₀	К	K ₀	K40 .	, K ₈₀	Mean
0.60	0.44	0.40	0.56	0.44	0.46	0.50	0.46	0.48	0.48
0.54	0.50	0.43	0.50	0.41	0.46	0.54	0.51	0.48	0.48
0.50	0.46		0.47						0.45
0.40	0.48	0.52	0.44	0.48	0.44	0.46	0.50	0.42	0.46
0.51	0.47	0.44	0.49	0.44	0.45	0.49	0.47	0.48	-
N - N	Aean			P-	Mean			K - Mea	n
N ₄₀ - 0.48	N ₈₀ 0.45	N ₁₂₀ 0.46		P ₀ 0.47	P ₆₀ 0.46	P ₁₂₀ 0.48	К _р 0.50	K ₄₀ 0.48	K ₇₀ 0.46
		P	K		, N		PxK		
	0.60 0.54 0.50 0.40 0.51 N - N 0.48	P ₀ K ₀ K ₄₀ 0.60 0.44 0.54 0.50 0.50 0.46 0.40 0.48 0.51 0.47 N - Mean N ₄₀ N ₈₀ 0.48 0.45 N	P ₀ K ₀ K ₄₀ K ₈₀ 0.60 0.44 0.40 0.54 0.50 0.43 0.50 0.46 0.40 0.40 0.48 0.52 0.51 0.47 0.44 N - Mean N ₄₀ N ₈₀ N ₁₂₀ 0.48 0.45 0.46 N P	P ₀ K ₀ K ₄₀ K ₈₀ K ₀ 0.60 0.44 0.40 0.56 0.54 0.50 0.43 0.50 0.50 0.46 0.40 0.47 0.40 0.48 0.52 0.44 0.51 0.47 0.44 0.49 N - Mean N ₁₂₀ 0.46 0.48 0.45 0.46 N P K	P ₀ P ₆₀ K ₀ K ₄₀ K ₈₀ K ₀ K ₄₀ 0.60 0.44 0.40 0.56 0.44 0.54 0.50 0.43 0.50 0.41 0.50 0.46 0.40 0.47 0.42 0.40 0.48 0.52 0.44 0.48 0.51 0.47 0.44 0.49 0.44 N - Mean P- P ₀ 0.47 0.48 0.45 0.46 0.47 N P K N x F	P ₀ P ₆₀ K ₀ K ₄₀ K ₈₀ K ₀ K ₄₉ K ₈₀ 0.60 0.44 0.40 0.56 0.44 0.46 0.54 0.50 0.43 0.50 0.41 0.46 0.50 0.46 0.40 0.47 0.42 0.43 0.40 0.48 0.52 0.44 0.48 0.44 0.51 0.47 0.44 0.49 0.44 0.45 N - Mean P- Mean P- Mean P- Mean P- Mean N ₂₀ N ₈₀ N ₁₂₀ P ₀ P ₉₀ P ₉₀ 0.48 0.45 0.46 0.47 0.46 N P K N x P N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

0.18 dSm⁻¹, pH 7.8, available N 172 kg ha⁻¹, P 10.5 kg ha⁻¹ and K 224 kg ha⁻¹. The treatments consisted of four levels of N (0, 40, 80 and 120 kg ha⁻¹), three levels of P₂O₅ (0, 60 and 120 kg ha⁻¹) and three levels of K₂O (0, 40 and 80 kg ha⁻¹). Thus, there were thirty six treatment combinations with three replications. The experiment was conducted in a factorial randomized block design under irrigated condition with tomato var. Paiyur-1 as test crop. Fruit yield was recorded. Representative fruit samples were drawn during

fifth picking and the T.S.S. using hand refrectometer and acidity (by titrimetry) were assessed. The soil samples collected at harvest were processed and analysed for available N (Subbiah and Asija, 1956), P (Watenabe and Olsen, 1965) and K (Hanway and Heidal, 1952). The plant samples were analysed for the total N (Humphries, 1956), P and K (Jackson, 1973) contents and uptake was computed using the contents and yield. The data were subjected to statistical scrutiny following the procedures outlined by Snedecor and Cochran (1968)

Table 4. Effect of N, P and K on nutrient uptake (kg ha-1) by tomato crop

200222440	Po				P40		P ₁₂₀			3.5000
Level	K _o	K.,9	K,o	K ₀	K ₄₀	K ₈₀	K ₀	K ₄₀	K _{so}	Mean
Nitrogen					:::					7
N _o	44.3	74.4	85.7	56.3	75.7	63.3	45.7	70.2	60.1	63.9
N ₄₀	56.3	84.5	77.7	104.1	73.5	64.0	56.3	86.0		76.2
N 40	64.5	76.3	78.2	86.7	75.7	100.0			106.7	83.9
N ⁸⁰	63.8	92.7	73.2	64.4	84.0	66.6	87.3	86.0	80.4	77.6
N ₈₀ N ₁₂₀ Mean	57.2	82.0	78.7	77.9	77.2	73.5	70.8	78.9	82.7	-
	N - 1	Mean			p.	Mean		4	K - Mear	
N			N ₁₂₀				P	K ₀	K ₄₀	
N 63.9	N ₄₀ 76.2	N ₈₀ 83.9	77.6		P ₀ 72.6	P ₆₀ 76.2	P. 77.5	68.6	79.4	K _m 78.3
Phosphor				,						3.4
N _o	26.3	33.9	37.2	30.3	44.1	35.4	35.0	36.5	32.1	- 34.5
N _m	37.4	38.1	31.1	44.4	48.5	36.8	39.3	42.9	46.1	40.5
N_{so}	30.9	44.4	49.5	30.5	35.9	48.2	50.0	40.0	66.2	44.0
N,20	30.2	44.1	47.6	31.4	38.9	47.6	38.1	36.8	46.1	40.1
N _{so} N ₁₂₀ Mean	31.2	40.1	41.3	34.1	41.8	42.0	40.6	39.1	47.6	,,,,
	N - 1	Mean			P-	Mean			K - Mear	
N,	N_{20}	N _{so}	N ₁₂₀			P.,,	P	K	K40	
34.5	N ₄₀ 40.5	N ₈₀ 44.0	40.1		P ₀ 37.5	Ρ _ω 39.3	P ₁₂₀ 42.4	Κ ₀ 35.3	40.3	K ₂₀ 43.6
Potassium								Ж.		;÷:
N_o	17.7	38.8	49.8	28.2	45.0	49.0	30.0	34.8	26.5	35.5
N_{40}	29.2	41.5	41.0	27.8	38.2	29.2	35.0	49.9	69.1	40.1
N _{so}	34.9	57.8	52.4	23.8	52.6	72.4	75.5	41.1	70.8	53.5
N,20	26.1	71.1	55.3	37.3	25.3	55.4	37.0	35.0	44.1	42.9
N ₀ N ₂₀ N ₅₀ N ₁₂₀ Mean	27.0	52.3	49.6	29.3	40.3	51.5	44.4	40.0	52.6	-
	N - Mean		-4		P- Mean		- '		K - Mean	
N _o	N ₄₀ 40.1		N				Ρ	K		
35.5	40.1	N ₈₀ 53.5	N ₁₂₀ 42.9)	P ₀ 43.0	P ₆₀ 40.4	P ₁₂₀ 45.7	Κ ₀ 33.6	K ₄₀ 44.3	K ₈₀ 51.2
CD (P=0.0)5)									*
Source		V	P	K	NxP	NxK		DeV N. D		v
N		.9	NS	7.8	NS				NxPx	
P		.4	3.4	4.7	NS		NS 1		NS	
K		0.1						NS		
K	10).1	NS	9.2	NS	N	IS	NS	NS	

Results and Discussion Fruit yield

The encouraging response of tomato to N and K in course textured soil could be well visualized with significantly higher fruit yield. Comparing with K, the effect of N levels was more prominent (Table 1). Application of 80 kg N ha⁻¹ registered the highest yield of 38.0 t ha⁻¹ with an yield improvement of 37.7

per cent over N₀. Favourable influence of N in enhancing the fruit yield in the present study find support from Subbiah (1990). However, further increase in N dose to 120 kg ha⁻¹ failed to increase the yield and its effect was almost equal to 40 kg N ha⁻¹. The K level at 40 kg ha⁻¹ proved its significance over control but declined at 80 kg ha⁻¹. Albeit the marginal differences among the P levels,

Table 5. Effect of N, P and K on post harvest soil fertility (kg ha-1)

Level	7	P _a			P ₆₀			P ₁₂₀		
	K ₀	K ₄₀	K ₈₀	K _o	K ₄₀	K ₈₀	K ₀	K ₄₀	K ₂₀	Mean
Available	Nitrogen				-	-				
N _o	162	165	160	172	161	170	156	159	166.	163.4
N ₄₀	168	170	165	180	170	180	168	172	180	172.6
N.	180	186	165	186	190	170	174	172	172	177.21
N ₁₂₀	178	192	190	186	186	188		184	195	187.2
Mean	172.0	178.3	170.0	181.0			171.0	171;8	178.3	-
	N - 1	Mean			P-	Mean	4		K - Mea	n: :
N	N_{40}	N _{so}	Nim		Po	P	P	K _n	K ₄₀	K_{80}
N 163.4	172.6	177.2	N ₁₂₀ 187.2	1 4	173.4	P ₆₀ 178.3	P ₁₂₀ 173.3	174.7	175.6	175.1
Available	Phoshpho	orus								
N _o	9.3	10.6	11.6	9.6	10.6	12.6	11.2	9.8	10.8	10.7
N ₀ N ₄₀	9.8	11.2	11.2	9.8	9.9	13.0	10.0	11.2	11.6	10.9
N _{ea}	9.9	10.5	10.9	9.6	11.3	9.9	12.6	10.6	14.8	11.1
N ₁₂₀	10.0	10.8	10.8	10.0	11.4	10.6	10.4	10.4	13.6	10.9
Mean	9.8	10.8	11.1	9.8	10.8	11.5	11.1	10.5	12.7	-
#	N - 1	Mean			P-	Mean			n	
N 10.7	N ₄₀ 10.9	N ₈₀ 11.1	N ₁₂₀ 10.9		P ₀ 10.2	P ₆₀ 10.7	P ₁₂₀ 11.4	K ₀ 10.2	K ₄₀ 10.7	K ₈₀ 11.8
			10.2		10.2	10.7	*****	10		(0.000)
. 4.	e Potassiui		000	225	225	224	226	222	225	225.0
N_0	214	224	220	225	235	224	226 242	222 208	235 217	221.3
N ₄₀	216	210	207	220	240	232	228	206	228	217.1
N ₈₀ N ₁₂₀	210	208	210	220	230	214	235	225	230	- 220.0
N ₁₂₀	222	210	204	210	226	218				- 220.0
Mean	216.5	213.0	210.3	218.8			232.8			
		Mean		P- Mean			K - Me			
N 225.0	N ₄₀ 221.3	N ₈₀ 217.1	N ₁₂₀ 220.0	()	P ₀ 213.3	P _ω 224.5	P ₁₂₀ 225.5	K 222.7	K ₄₀ 220.4	K _{so} 219.9
CD (P=0	.05)					and the second				I I'l ion
Source		N	P	K	NxP	NxK		PxK		
N		5.2	NS .	NS	NS		NS	NS ·	N	
P		NS	0.38	0.45	NS		NS	NS		S -
ĸ		NS	NS	NS	NS		NS	NS	N	S

P₂O₅ at 60 kg ha⁻¹ becomes essential as a maintainer dose to avoid soil P depletion and also for balanced crop nutrition.

Fruit quality

The T.S.S. content of fruit was altered by P and K levels and not by the N. A value of 3.87 briggs at P_o got increased to 4.27 (P_ω) and declined to 4.10 briggs with subsequent increase in P level (Table 2). However, the T.S.S. progressively increased with increase in K levels with respective values of 3.92, 4.02 and 4.30 briggs at 0,40 and 80 kg K₂O ha⁻¹. The acidity, an important quality determining factor was found to be independent of nutrient levels and the differences ensured by the treatments were of numerical but not significant (Table 3). Similar trend of ineffectiveness of N on quality of tomato under rainfed condition was earlier reported by Duraisamy et al. (1999).

Nutrients uptake

The N uptake was favourably increased by the application of N, P and K and the effect of N levels was more prominent than P and K (Table 4). Among the N levels, the N uptake ranged from 63.9 to 83.9 kg ha-1 and exhibited a curvilinear trend with progressive increase in uptake upto 80 kg ha-1 and declined there after. The P and K levels increased the N uptake but at a decreasing rate at higher levels. The present results corroborate with the findings of Balasubramaniam et al. (1998). The P uptake of 34.5 kg har at No level got increased to 44.0 kg har at 80 kg har and declined at 120 kg N ha-1 (40.1 kg ha-1). Among the P levels, the highest uptake of 42.4 kg ha-1 was recorded at 120 kg P2O5 ha-1. The uptake of P was more favoured by K levels with a range of 35.3 to 43.6 kg ha-1. This clearly indicates that the K application has aided in better absorption and translocation of P. The K uptake was prominently affected by N and K levels with higher values registered at N_{en} (53.5 ha^{-1}) and K_{g0} (51.2 kg ha^{-1}) levels.

Soil available nutrients

The soil available N varied markedly among the N levels. With increasing N levels, the availability also progressively increased (Table 5). A value of 163.4 kg ha-1 in control got increased to the maximum of 187.2 kg ha-1 at 120 kg ha-1 level. However, the P and K levels though brought about changes in N availability, the differences were within narrow limits. The P availability differed as influenced by P and K levels with a range of 10.2 to 11.4 and 10.2 to 11.8 kg ha-1, respectively. In both the cases, the P availability showed a linear increase with the levels. The magnitude of variation in P content of soil due to N levels was not to that extent of P and K. The various treatments though differed the soil available K, the values remained to be on par and this might be due to the high available K status of the experimental soil.

It may be concluded that application of 80-60-40 kg N, P₂O₅ and K₂O ha⁻¹ is optimum in improving the yield and nutrient uptake by irrigated tomato and maintenance of soifertility in the red loamy sand soil.

References

- Balasubramaniam, P., Mani, A.K. Durisamy, P. an Kandaswami, M. (1998). Effect of organi and inorganic nutrients on the yield uptak of tomato (Lycopersicon esculentum) in Alfisol. South Indian Hort. 46: 143-147
- Duraisamy, P., Mani, A.K. and Balasubramaniam P. (1999). Effect of fertilizer nitrogen azospirillum and organics on yield and nutrition of tomato. South Indian Hort. 47 234-236.
- Hanway, J.J. and Heidal, H. (1952). Soil analysis methods as used in lowa State college soil testing laboratory. *Iowa state college Agric* Bull, 57: 1-13.
- Humphries, E.C. (1956). Modern Methods of Soi Analysis. Springer - Verlag. Berlin. 1: 468 502.
- Jackson, M.L. (1973). Soil Chemical Analysis Prentice Half of India Pvt. Ltd. New Delhi
- Snedecor, G.W. and Cochran, W.G. (1968) Statistical methods. Oxford and IBH Publishing Company., New Delhi.
- Subbiah, B.V. and Asija, G.L. (1956). A rapid procedure for estimation of available nitrogen in soil. Curr. Sci. 25: 259-269.
- Subbiah, K. (1990). Nitrogen and azospirillum interaction on fruit yield and nitrogen use efficiency in tomato. South Indian Hort. 30: 342-344.
- Watenabe, F.S. and Olsen, S.R. (1965). Test an ascarbic acid method for determination of phosphorus in water and NaHCO₃ extracts form soil. Soil Sci. Soc. Am Proc. 29: 677-679.

(Received: May 2001; Revised: July 2002)