PERFORMANCE OF SUNFLOWER BASED INTERCROPPING SYSTEMS UNDER IRRIGATED CONDITION

A.S. VENKATAKRISHNAN and N.BALASUBRAMANIAM

Department of Agronomy
Agricultural College and Research Institute
Tamil Nadu Agricultural University
Coimbatore 641 003

ABSTRACT

A two year field study (1993 and 1994) revealed that intercropping of sunflower (Helianthus annuus L.) with black gram (phaseolus mungo L.) was most productive interms of sunflower equivalent yield. Sunflower + black gram recorded the highest sunflower equivalent yield (1377 kg/ha) land equivalent ratio (1.19), highest net return (Rs.10088/ha) and benefit cost ratio (3.74). Among the sole cropping, pigeon pea recorded more sunflower equivalent yield, (1559 kg/ha) the highest net return, (Rs. 11588/ha) and benefit cost ratio (3.90). Intercropping of pigeonpea (Cajanus cajan) with sunflower was least productive combination among the intercropping combinations.

KEY WORDS: Sunflower, intercropping system, yield attributes, yield

Sunflower (Helianthus annuus L.) has established its place as a newly introduced oil seed crop in Tamil Nadu. Intercropping systems in sunflower are more staple and more remunerative due to higher productivity. Intercropping of grain legumes with sunflower is quite common in Tamil Nadu. The most important benefit of intercropping is the higher out put per unit area per unit time which is very crucial in small farms (Veerabadran, 1989). In sunflower-soybean intercropping system the and equivalent ratio, and gross income were higher than sole corpping (Shivaramu and Shivasankar. 1992). Hence, the present investigation was under taken up to find out the

information on best suited inter cropping system of irrigated sunflower under Tamil Nadu conditions.

MATERIALS AND METHODS

An investigation was carried out during the rabi 1993 and kharif 1994 at the Tamil Nadu Agricultural University Farm, Coimbatore to identify the suitable intercrop in sunflower. There were 9 treatment combinations comprising 5 sole crops, viz., sunflower (Helianthus annuus L.) pigeonpea (cajanus cajan L.) groundout (Arachis hypogaea L.), soybean (Glycine max (L.) Merril and black gram (Phaseolus mungo L.) and 4 intercrop combinations viz., sunflower + pigeonpea

Table 1. Performance of Sunflower based intercropping systems

Treatment	yield (kg/ha)				Sunflower		Net return				Land equivalent	
	1993		1994		equivalent Yield (kg/ha)		(Rs Jha)		Benefit cost Ratio		ratio	
	Main crop	Inter crop	Main crop	Inter	1993	1994	1993	1994	1993	1994	1993	1994
Sole sunflower	1317		1282	7.4	1317	1282	9620	9070	3.61	3,42	1.00	1.00
Sole pigeon pea	977		1102	7.4	1466	1653	10700	12475	3.71	4.08	1.00	1.00
Sole groundnut	950	-	1382		950	1382	4300	8470	1.83	2.58	1.00	1.00
Sole soybean	1070	1-4	1173	34	856	998	4535	5311	1.99	2.14	1.00	1.00
Sole black gram Sunflower+	850	# ₊	945	-	1020	1134	7250	8290	3.46	3,71	1 00	1,01
Pigeonpea (1:1) Sunflower +	424	546	463	572	1243	1321	8191	8856	2.93	2,67	0.85	0.88
soybean (1:4) Sunflower+	535	856	523	844	1220	1368	8198	10155	2.85	2.78	114	1.18
groundnut (1:4) Sunflower +	540	760	512	754	1300	1153	8150	6976	2.68	2,53	1.15	T63
black gram (1:4)	528	680	532	732	1344	1410	9786	10390	3.68	3.80	1.15	115
CD(P = 0.05)					88	142	*:		-30,00	***		1 1:1

	Pooled sunflower	- Yield	(kg/ha)			
Treatment	equivalent yield (Kg/ha)	Pure crop	Inter crop	Net return	B:C ratio	LER
Sole sunflower	1299	1300	: e:	9345	3.52	1.00
Sole pigeon pea -	1559	1040	. •	11588	3.90	1.00
Sole groundnut	1166	1166		6385	2.21	1.00
Sole soybean	927	1122	3*:	6385	2.21	1.00
Sole black gram	1077	898	5. * 5;	7770	3.59	1.00
Sunflower + pigonpea (1:1)	1282	444	559	8524	2.80	0.88
Sunflower + soybean (1:4)	1294	532	850 -	9153	2.82	1.16
Sunflower + groundnut (1:4)	1186	524	805	7587	2.58	1.12
Sunflower + black gram (1:4)	1377	530	706	10088	3.74	1.19
CD (P = 0.05)	80.30				•	

Table 2. Performance of Sunflower based intercropping systems (sean of two years)

(1:1), sunflower + soybean (1:4), sunflower + groundnut (1:4) and sunflower + black gram (1:4) formed the treatments. The experiment was laid out in randomised black design with three replications. The variety tried in the experiments were CO₂ sunflower, CO₅ pigeonpea, VRI.1 groundnut, CO₁ soybean and CO₅ black gram. The recommended fertilizers were applied for each crop. The soil was sandy loam, low in available N, (212 kg/ha) medium in available P₂O₅ (13.8 kg/ha) and high in available K₂O (438 kg/ha) with a pH7.4.

RESULTS AND DISCUSSION

Grain yield and sunflower equivalent yield (SFEY)

The grain yield in terms of SFEY was significantly influenced by various sole cropping as well as intercropping systems in both the years (Table 1). Among the various sole cropping systems, growing of pigeon pea recorded the highest SFEY followed by sole sunflower. Among the various intercropping situations, the SFEY was increased when it was intercropped with black gram or soybean or groundnut in both the years. Thus the present investigation clearly indicated that the three inter cropping situations viz, sunflower + black gram + sunflower soybean and sunflower + groundnut may be grown in the intercropping system of sunflower.

Land equivalent ratio

Mean land equivalent ratio (LER) was the highest under sunflower + black gram followed by sunflower + soybean and sunflower + groundnut (Table 2). Further, LER calculated from combined intercrops yield was always higher than sole crop except sunflower + pigeon pea during both the years. This indicates greater biological efficiency of intercropping treatments. Beneficial effect of intercropping on land utilisation was reported in maize + grain legumes (Shan et al., 1991).

Net return and benefit cost ratio

Sole cropping of pigeon pea recorded the highest net return and benefit cost ratio over other systems (Tables 1, 2). However, among the intercropping systems, sunflower + black gram recorded the highest net return and benefit cost ratio over other intercropping systems. The lowest net return and benefit cost ratio recorded in growing of sole soybean. Sunflower + groundnut recorded the lowest net return and benefit cost ratio under various intercropping systems.

REFERENCES

SHAH, M.H., KOUL, P.K., KHANDAY, B.A. and KACHROO, D. (1991). Production potential and monetary advantage index of maize intercropped with different grain legumes. Indian J. Agron., 36: 23:28

SHIVARAMU, H.S. and SHIVASANKAR, K. (1992) Performance of sunflower and soybean intercropping with different plant populations and planting patterns. Indian J. Agron., 37 231-236.

VEERABADRAN, V. (1989). Sorghum and Cowpea Genotypes for Dryland Intercropping with Land Management and Nitrogen Nutrition. Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore.

(Received: December 1995 Revised: April 1996)