EFFECT OF FYM, NITROGEN AND POTASH ON YIELD AND UPTAKE OF NUTRIENTS IN GROUNDNUT

S.LOGANATHAN, J.HELKIAH AND S.THANGAVELU

Regional Research Station
Tamil Nadu Agricultural University
Vridhachalam 606 001

ABSTRACT

A study was taken up in the red lateritic soil of Vridhachalam to find out the effect of N, K, and FYM on the yield and uptake of nutrients in groundnut. The trial was conducted in three seasons in a randomised block design with 32 treatment combinations which consisted of 2 levels of FYM (0 and 6.25 tons/ha) four levels of N (0, 9, 18 and 27 kg N/ha), and four levels of K (0, 27, 54 and 81 kg K₂ 0/ha). The results showed that application of 9 kg N, 54 kg K₂ 0 and 6.25 tons FYM/ha significantly increased groundnut pod yield over the other levels tried. Oil content in kernel was enchaced by K application at 54 kg and 81 kg K₂ 0/ha. N and P uptake were increased by application of FYM at 6.25 t/ha and K at 54 kg K₂ 0/ha respectively.

KEY WORDS: Plant Nutrients, Nitrogen, Potassium, Yield, Uptake

True to the name "unpredictable legume" the response of groundnut to fertilizer application has always been highly varying in respect of locations, seasons and soils. Though it is a legume crop, N also has to be applied depending upon the soil and agroclimatic conditions and the variety of the crop along with P and K for maximising the yield.

Therefore, a study was taken up to investigate the effect of different levels of nitrogen, potassium and farm yard manure applied in combination on the yield and uptake of nutrients in groundnut in the red lateritic soils of Regional Research Station, Vriddhachalam, Tamil Nadu.

MATERIALS ABD METHODS

Under irrigated condition.

There were 32 treatment combinations of FYM, N and K as shown below;

FYM: 2 levels 0 and 6.25 t/ha

N: 4 levels 0, 9, 18 and 27 kg/ha

K: 4 levels 0, 27, 54 and 81 kg K2 0/ha.

The trial was laid out in randomised block design with three replications. VRI 1 groundnut was grown as test crop. Phosphorus at 36 kg/ha and gypsum 200 kg/ha was common to all plots. After the harvest of each crop, the yield of pod and haulm were recorded. At post harvest stage, soil samples were collected and analysed for available nutrients

and plant samples were analysed for total nutrient contents and calculating the uptake of nutrients.

RESULTS AND DISCUSSION

Yield of dry pod

The yield of dry pod (Table 1) obtained in summer 1988 was significantly higher than in summer 1989 scason. Similarly the pod yield in

Table 1. Yield of dry pod (mean values) (kg/ha)

Treatments	Summer 88 vs	vs	Summer 88 vs	vs	
	Summer 89	Khurif 89	Summer 89	Kharif 89	
First season	1886	2174	1886	1549	
Second season	1549	1561	2174	1561	
SE	9.99	16.66	14.99	12.49	
CD	29.17	46.67	43.33	34.16	
FYM o	1682	1792	1972	1501	
FYM 2	1753	1943	2087	1609	
SE	9.99	16.66	14.99	12.49	
CD	29.16	45.83	43,33	34.17	
N O	1628	1752	1866	1513	
NI	1742	1862	2048	1556	
N 2	1720	1948	2110	1560	
N 3	1780	1907	2095	1591	
SE	14.99	23.33	21.66	16.66	
CD	41.67	65.83	6083	48.33	
К 0	1619	1715	1833	1502	
ΚI	1699	1830	2035	1494	
K 2	1797	2016	2156	1657	
К 3	1754	1907	2095	1567	
SE	NS	23.33	30.83	NS	
CD		33.33	86,66		

Table 2. Data on analysis of soil and oil content in kernel

	Treatments	Summer 88 Available K	Summer 88 oil — content (%)	Summer 89		Kharif 89	
T				Available P (kg/ha)	Available K (kg/ha)	Available N (kg/ha)	Available K (kg/ha)
NO.	ко	105	43.8	27.8	82,2	105,8	104.2
140	K1	115	44,5	30.0	96.7	110.7	118.7
	K2	98	43.4	31.3	111.0	107.8	123.5
	K3	108	43.9	30.8	122:8	108.0	132.3
	Mean	107	43.9	29.8	103.2	108.3	119.7
NI	КО	122	44.7	28.8	89.2	110.8	104.3
17.8	K1	103	43.8	28.7	98.5	114.0	116.3
	K2	107	43.9	31.7	112.2	112.7	128.2
	К3	125	44.3	33.5	124.3	112.0	134.3
	Mean	- 114	44,2	30.7	106.0	112.3	120.8
N2	ко	112	43.7	27.5	89.2	114.7	107.5
	· KI	108	45.4	27.5	101.7	108.5	117.5
	К2	98	43.5	29.3	108.2	113,8	125.3
	• кз	92	43.9	29.7	121.5	113.5	131.3
	Mean	103	44.1	28.5	105.1	112.6	120.4
N3	КО	115	44.6	28.3	90.0	112.8	106.3
15	KI	118	43.0	27.3	96.0	112.7	119.3
	K2	132	43.4	27.0	115.8	114.2	124.3
	КЗ	120	43.9	26.8	126.3	.112.5	133.0
	Mean	121	43.7	27.4	107.1	113.0	120.8
70	NO	- 113	43.8	31,2	103.4	106.4	117.8
	NI	112	44.5	32.4	105.3	109.2	123.3
	N2	107	44.2	28.3	104.3	110.2	119.8
	N3	129	43.8	26.0	104.1	110.0	119.4
	Mean	115	44.1	29.5	104.3	108.9	120.0
71	NO	93	43.9	28.4	102.9	110.2	121.6
•	N1	117	43.9	28.9	106.8	115.3	118.3
	N2	98	44.0	28.8	105.9	115.1	121.3
	N3	113	43.7	28.8	110.2	116.0	122.1
	· Mean	105	43.9	28.7	106.4	114.2	120.8
0	K0	110	44.5	27.3	85.3	108.5	105.6
	.KI	120	44.4	27.9	98.3	108.7	116.8
	K2 ·	114	42.9	30.7	110.8	109.8	125.1
	КЗ	116	44.5	31.9	122.8	108.9	132.7
	Mean	115	44.1	29.6	104.3	108.9	120.0
1	ко	117	43.9	28.5	89.9	113.6	105.6
•	KI	103	43.9	28.8	98.3	114.3	119.1
	K2	103	44.5	29.0	112.8	114.5	125.6
	K3	99	43.6	28.5	124.8	114.3	132.8
	Mean	105	43.9	28.7	106.4	114.2	120.8
EN		5.0	NS	0.53	1994	0.54	
DN		15.0	113	1.50	-	1.52	1 -
EK		10.0		0.53	1.39	4,24	0.98
							2.77
DK				1.50	3.90	0.38	
EF						. 1.07	

Table 3. Uptake of nutrient by groundnut crop (kg/ha)

타고:	S. A.D 1	5 + 4 ⁻¹	Summer 89		* P.	Kharif 89	
Tre	atments -	N	P	К	N	P	K
40 -	К0	102.1	26.9	33.2	102.8	27.1	31.5
	KI	108.9	27.3	33.8	100.6	26.9	33.9
	K2	107.2	28.0	36.6	100.6	27.1	35.8
	К3	103.9	27.6	34.9	101.3	27.3	33.9
	Mean	105.5	27.5	34.6	101.3	27.1	33.8
¥1	K0"	101.9	26.6	32.3	103.3	27.1	81.7
	K1	103.3	26.9	34.9	103.5	27.3	33.7
	K2	105.8	27.6	36.4	104.1	27.1	36.2
	К3	107.5	27.9	33.5	103.0	26.5	33.9
	Mean	104.7	27.2	34.3	103.5	27.0	33.9
12	КО	102.2	26.8	32.7	104.8	27.1	32.6
	K1	104.3	27.6	34.8	104.8	27.1	33.9
	K2	104.5	27.4	36.9	104.6	26.5	36.1
	K3	108.2	27.8	34.2	104.5	26.7	34.2
	Mean	104.8	27,4	34.6	104.7	26.7	34.2
13	KO-	102.0	26.3	31.6	105.1	26.8	31.9
, .	K1	104.6	27.1	32.8	- 105.5	26.8	34.0
	K2	106.6	26.7	35.8	105.6	26.9	35.9
	K3	100.2	26.7	33.4	105.3	27.3	34.2
	Mean	102.4	26.7	34.4	105.4	26.9	33.9
)	NO	102.5	26.9	34.0	100.9	26.8	33.9
y .	NI	105.4	27.5	35.0	103.3	27.1	34.0
	N2	- 104.7	27.6	34.9	104.4	26.9	34.1
	N3	101.2	26.4	33.0	105.2	27.1	33.9
	Mean	103.4	27.1	34.3	103.4	26.9	33.9
4	NO NO	108.5	23.0	35.3	101.8	27.4	33.7
1		103.9	26.9	33.5	103.6	26.9	33.8
	NI		27.2	34.3	105.0	26.9	34.4
	N2	104.9		33.8	105.6	26.9	34.1
	N3	105.6	26.9 27.3	34.3	103.9	27.0	33.9
4 5	Mean	105.7	26.6	32.4	103.8	26.8	31.9
0 •	K0	104.1	26.9	34.5	103.2	27.1	33.9
	K1	104.7		36.2	103.5	26.8	36.1
	.K2	105.1	27.3		103.2	27.2	34.0
	К3	102.4	27.6	33.9	103.4	26.9	33.9
	Mean	103.4	27.1	34.3	W 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27.3	31.9
1	K0	102.7	26.7	32.5	104.2	27.0	31.0
	KI	105.9	27.6	33.3	103.9	27.0	35.9
	K2	106.9	27.5	36.7	103.9	26.7	34.1
	K3	107.5	27.4	34.0	103.8		
	Mean	103.7	27.3	34.2	103.9	27.0	33.9
EN		NS	NS	0.16	0.12	NS	
Иď				0.44	0.35		
EK				0.16	,		0.54
CD K			0.44			1.52	
SENxK			0.31				
DN	x K			0.87	_ 2.21.46 è		
EF			1		0.09		
DF					0.25		

kharif 88 was higher than in kharif 89. The year 1988 has been found to be favourable in both the seasons compared to 1989. Likewise, when summer and kharif seasons of 1988 were compared, the yield in kharif was better. The rainfall received during kharif season may be a factor beneficial for the crop in controlling the pests in addition to chemical control of the pests. In all the four seasons, the application of FYM at 6.25 t/ha has resulted in significantly higher pod yield of groundnut compared to no application of FYM. This is in conformity with the findings of Jayachandran et al. (1975) who observed that application of FYM at 6.25 t/ha was associated with significantly higher yield over no FYM. Similar results were obtained by Loganathan and Krishnamurthy (1980) also.

Likewise in the four seasons of the study, the yield due to N application at three levels viz., 9, 18 and 27 kg N/ha were on a par but superior to control. This indicated that 9 kg N/ha was adequate for irrigated groundnut. Jayachandran et al., (1975) reported that under red loamy soil conditions of Tindivanam, higher does of N upto 33 kg/ha failed to bring about any favourable response over no nitrogen. In the present study, the lowest level of 9 kg N/ha is on par with higher levels of N.

Regarding K effect on pod yield, it was observed that application of 54 kg K2 0/ha resulted significantly higher yield compared to other levels. The interaction between N and K was also significant. At all the four levels of N viz., 0, 9, 18 and 27 kg N/ha potash at 54 kg K20/ha has significantly increased the pod yield. This was followed by 81 kg K20/ha. Therefore it is evident that K application is indispensable for groundnut irrespective of whether N is applied at lowest or

higher level. It has been reported that FYM at 10 to 15 tons/ha every year along with the recommended dose of NPK produced higher groundnut yields than did the NPK treatment alone (Anon., 1986). The results of the present study are in corroboration with the above.

Oil content

In summer 88 as well as *kharif* 89 seasons, it was observed that K application at 81 kg/ha has shown significant improvement in oil content of kernel compared to other levels (Table 2).

Uptake of nutrients

Summer 1989: The uptake of N and P by groundnut was not influenced by the treatments whereas K uptake was significantly higher in 9 and 18 kg N/ha application. K addition at 54 kg K₂0/ha has enhanced the uptake of K by groundnut.

kharif 1989: N uptake by groundnut was significantly higher in the treatments of 6.25 ton: FYM/ha compared to No FYM. The total uptake of P was found to be higher in the treatment of 54 kg K₂0/ha compared to other levels applied. This was comparable with 81 and 27 kg K₂0/ha which were on par but superior to control (Ko)

REFERENCES

ANONYMOUS, (1986) Annual report 1984-85, All India Co-ordinated Research Project on Long-Term Fertilizer Experiments, I.C.A.R. New Delhi, India, 129 pp.

JAYACHANDRAN, V., NATARAJAN, A., KRISHNA-MURTHY, V.S., and THANDAVARAYAN, K. (1975) Studies on the NPK requirements for groundnut under rainfed conditions. Potash News 1 (1): 4-10.

LOGANATHAN, S and KRISHNAMURTHY, V.S.(1980). Potash application to groundnut. Madras Agric.J., 67: 610-612.

(Received: May 1994 Revised: August 1996)