A enhancing soil nutrient status especially nitrogen falance because of the additions of easily lecomposable crop residues.

REFERENCES

- 6NONYMOUS. (1972). Recent research on multiple cropping.Bulletin 8, Indian Agric. Research. Instt., New Delhi.
- AGGARWAL, R.K. and VENKATESWARALU, J. (1989).

 Long term effect of manures and fertilizers on important cropping system of arid region. Fertil. News 34(4): 67-70.
- 3ISWAS, C.R. and BENBI, D.K. (1989). Long term effects of manure and fertilizer on wheat - based cropping systems in semi-arid alluvial soils. Fertil. News 34(3): 33-38.
- BISWAS, C.R., SEKHON, G.S. and SINGH, R. (1977). Accumulation and decline of available phosphorus and potassium in soil under multiple cropping. J. Indian Soc. Soil Sci., 25: 23-27.
- DE DATTA, S.K. (1988). Integrated nutrient supply in relation to soil fertility and fertilizer management in lowland rice. Paper presented at the All India Rice Workshop, 26-29 April. 1988. Coimbatore, Tamil Nadu, India.
- MEENA, J.N., SHARMA, S.N. and SINGH, S. (1993). Effect of cropping system, residual nitrogen and phosphorus on yield and nutrient uptake by green gram (*Phaseolus* radiatus). Indian J. Agron., 38: 124-126.
- NAMBIAR, K.K.M. and ABROL, I.P. (1989). Long term fertilizer experiments in India - An over view. Fertil. News 34(4):11-20.

Madras Agric. J., 83(3): 168-172 March 1996 https://doi.org/10.29321/MAJ.10.A00997

- PURUSHOTHAMAN, S. (1979). Studies on rice-based multiple cropping systems. Ph.D. Thesis. Tamil Nadu Agricultural University, Coimbatore. Tamil Nadu, India. 151. pp.
- REDDY,G.V., REDDY, B.B. and REDDY, T.M.M. (1986).
 Nitrogen and phosphorus management in rice based cropping systems. In:Soil Fertility and Fertilizer. (Misra, R.V. ed.). Farmers fertilizer co- operative Limited, New Delhi, India.
- SADANANDAN, N and MAHAPATRA, I.C. (1973a). Studies on multiple cropping - balance sheet of total and available nitrogen in soil in various cropping patterns. Indian J. Agron., 18: 3 23-328.
- SADANANDAN, N and MAHAPATRA, I.C. (1973b). Studies on multiple cropping balance sheet of total and available phosphorus in various cropping patterns. Indian J.Agron., 18:459-463.
- SADANANDAN, N and MAHAPATRA, I.C. (1974). Studies on multiple cropping - balance sheet of total and exchangeable potassium in soil in various cropping patterns. Indian J. Agron., 19: 138-140.
- SINGH, A and NAIR, P.K.R. (1973). Bases of multiple cropping. In: Proceedings of the Symposium on Multiple Cropping. Indian Society of Agronomy, New Delhi, India, pp.25-31.
- VENUGOPAL, K. (1978). Studies on multiple cropping with cotton based cropping systems. Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. 162pp:

(Received: December 1994 Revised: January 1995)

ECONOMICS OF POTASSIUM MANAGEMENT IN RICE BASED CROPPING SYSTEMS

G.JAMES MARTIN

Department of Agronomy
Agricultural College and Research Institute
Tamil Nadu Agricultural University
Coimbatore 641 003

ABSTRACT

Field experiments were conducted consecutively for three seasons at the Tamil Nadu Agricultural University, Coimbatore. Four rice based cropping systems were evaluated. Application of either half or full dose of K fertilizer was tested for the respective crops. Skipping of K application to any two of the component crops of the cropping systems and K application to all the three crops were included. Rice - rice - rice system registered the highest net return. However, rice - rice - soybean system recorded higher net return as well as BC ratio. Application of half the recommended dose of K was remunerative.

KEY WORDS: Rice Based Cropping Systems, Potassium Fertilizer, Gross Return, Net Return, BC ratio.

Systems approach of nutrient supply to a cropping system as a whole is the best for increasing the fertilizer use efficiency and economising the use of costly chemical fertilizers (Swaminathan, 1981). The production potentials of the cropping systems could be exploited with

proper nutrient management practices. While research works on N and P management in rice based cropping systems are many, very little work has been done on potassium (K) management. Hence, a study was undertaken to determine the

Table 1. Gross returns (Rs.ha'1) from the cropping systems, Colmbatore

Cropping system	K level	Sı	S ₂	S ₃	S ₄	Mean
Rice-Rice-Rice	Kı	40150	40596	40636	41314	40674
(C _I)	K ₂	39092	38943	38325	40633	39249
ær.	Mean	39621	39770	39480	40974	39962
	Ko		4	*		37517
Rice-Rice-Soybean	K _I	38861	37670	38630	39110	38568
(C ₂)	K ₂	37302	39782	37832	39976	38723
٠	Mean	38082	38726	38231	39543	38646
	Ko			name s D	+0	36112
Rice-Rice-Finger millet	Kı	29469	30064	29581	30594	29927
,(C ₃)	K ₂	29080	28583	29539	30393	29399
	Mean	29274	29324	29560	30494	29663
	K_0		72.450	TRANS	PPRET	29043
Rice-Rice-Cotton	K ₁	28764	30048	30345	30678	29969
(C ₄)	, K ₂	28797	29453	29219	29992	29365
	Mean	28780	29750	29782	30335	29662
	Ko	* 810.01	************		00000	28178
1.	Mean	33939	34393	34263	35336 -	20170
****	1		SED	CD (P=		
Cro	opping systems		647	158	Care of	
KI	evels	•	193	387		
Sea	son of application		274	547	į,	
Kle	evels x Season		387	NS		
, Ca	t K		739	1762	2	
· K at C			387	773		
C at 5		834		NS		
Sat			547	NS		
	itrol vs Rest		- 290	580		
19	control vs Rest		1108	NS		
Con	itrol vs Rest at C		580	'NS		

S1 - K applied during SWM season, 1984

economics of potassium management in rice based cropping systems of Western Tamil Nadu.

MATERIALS AND METHOD

Field experiments were conducted for three seasons consecutively viz., kharif season of 1984 (Jun.-Sep. 1984), rabi season of 1984-85 (Oct. 1984-Feb.1985) and summer season of 1985 (Feb.-May, 1985) at the Central Farm Wetlands,

to assess the economics of K management in rice based cropping systems. The soil of the experimental field was deep clay loam with low in available N (264 kg/ha), medium in available P (17.2 kg/ha) and high in available K (453 kg/ha). The pH of the soil was 8.1 and EC was 0.19 dSm⁻¹. Field experiments were laid out in split plot design with three replications. The details of the three season experiment are:

S2 - K applied during NEM season, 1984

S3 - K applied during Summer, 1985

S4 - K applied during all the three seasons

K1 - 50 per cent recommended dose of K

K2 - 100 per cent recommended dose of K

170 James Martin

:Main	plot	treatments	:	Crop	ping	S	ystems
-------	------	------------	---	------	------	---	--------

I Crop	II Crop	III Crop
South West	North East	Summer
Monsoon .	Monsoon	
(SWM) season	(NEM) season	
JUN-SEP. 1984	OCT.1984-	FEB-MAY 1985
. :	JAN.1985	
C ₁ Rice (IR 50)	- Rice (Co 43) -	Rice (IR 50)
C ₂ Rice (IR 50)	- Rice (Co 43) -	Soybean (Co1)
C3: Rice(IR 50)	Rice (Co 43) -	Finger millet
•		(Co 11)
C4: Rice (IR 50)	- Rice (Co 43)	- Cotton

Sub-Plot treatments: Levels (K) and season of application of K (S)

(MCU7)

Ko : Control(No K application)

K₁S₁: 50% recommended K to the first (SWM) crop alone

K₁S₂: 50% recommended K to the second (NEM) crop alone

K₁S₃: 50% recommended K to the third (Summer) crop alone

K₁S₄: 50% recommended K to all the three crops

K₂S₁: 100% recommended K to the first (SWM) crop alone

K₂S₂: 100% recommended K to the second (NEM) crop alone

K₂S₃: 100% recommended K to the third (Summer) crop alone

K₂S₄: 100% recommended K to all the three crops

For rice and finger millet, nursery was raised separately and seedlings were planted. In case of cotton, seeds were dibbed in dried banana leaf cups filled with red earth and farm yard manure; then the cotton seedlings were planted in the main field. Soybean was directly sown in the main field. Recommended doses of fertilizers to the different

o in s stem were as follows:

- 4		
Ferti	izer	nutrient

Crop	N	P2O5	K2O (kg ha 1)
Rice	100.0	50.0	50.0
Soybean	20.0	80.0	40.0
Finger millet	60.0	30.0	30.0
Cotton	60.0	60.0	: 60.0

The fertilizers were applied as urea, superphosphate and muriate of potash as detailed below:

	N	Р -	· K
	(of	the total de	ose)
Rice - Basal dressing	Half .	- Full	
Top dressing I (25 DAP)	Quarter	2	Half
Top dressing II (45 DAP)	Quarter		Half
Other crops - Basal dressing	Half	Full	Half -
Top dressing I (25 DAS/DAP)	Quarter	¥ _1	Quarter
Top dressing II (25 DAS/DAP)	Quarter	, ₂ :+	Quarter

Records of all inputs used and labour employed were maintained for all the crops and the total variable cost (TVC) for each cropping system was worked out. In working out the gross returns, the by- products like straw were also included. Prevailing market rates of produce were taken into account. From the gross returns and TVC, net returns and benefit cost (BC) ratio were calculated.

RESULTS AND DISCUSSION

Gross return from the cropping systems is given in Table 1. Among the cropping systems, C₂ (rice-rice-rice) system registered the highest gross return (Rs.38740 ha⁻¹). With rice as component crop in all the three seasons and with inclusion of rice straw in working out the gross return, rice-rice-rice system could register the highest gross return. However, the C₂ (rice-rice- soybean) system was also comparable with gross return of Rs.37379 ha⁻¹. Soybean with higher seed yield and higher price of the seed placed the system in the second position next to rice-rice-rice system.

The data on net return from the cropping systems are furnished in Table 2. K fertilization considerably augmented the net return from the cropping systems.

Net return from the cropping systems followed a similar trend as that of gross returns from the cropping systems except that the C2 (rice-rice-soybean) system achieved higher net return than in C1 (rice-rice-rice) system. Even though rice-rice-rice system produced the highest

Table 2. Net returns (Rs.ha-1) from the cropping systems, Coimbatore

Cropping system -	K level	Sı	S ₂	S ₃	S 4	Mean
Rice-Rice	K ₁	23055	23501	23541	24116	23553
(C ₁)	K ₂	21952	21185	23299	20479	21729
	Mean	22504	22343	23420	22298	22641
	Ko					29479
Rice-Rice-Soybean	Kı	24401	23212	24157	24557	24081
(C ₂)	K ₂	22791	25612	23512	24629	24136
	Mean	23596	24412	23832	24593	24108
	K ₀			1.27	* * *	21710
Rice-Rice-Finger millet	K ₁	15132	15642	15326	16008	15527
C ₃)	K2 -	15088	15160	15085	16165	15375
	Mean	15110	15401	15206	16087	15451
+ 11	Ko					14535
Rice-Rice-Cotton	K ₁	14071	15351	14671	15907	15000
(C ₄)	K ₂	14059	14714	14518	15096	14997
	Mean	14065	15033	14595	15502	14799
	Ko					13549
	Mean	18819	19297	19263	19620	1

S1 - K applied during SWM season, 1984

Table 3. Benefit Cost ratio of K management practices in the cropping systems, Coimbatore

Cropping system -	K level	Sı	S ₂	S ₃	S ₄	Mean
Rice-Rice-Rice	Kı	2.36	2.37	2.38	2.40	2.38
(C ₁)	K ₂	2.18	2.22	2.24	2.14	2.28
4.5	Mean	2.32	2.32	2.31	2.37	2.33
	Ko					2.29
Rice-Rice-Soybean	K ₁	2.69	2.61	2.67	2.69	2.67
(C ₂)	K ₂	2.57	2.27	2.62	2.68	2.54
	Mean	2.63	2.44	2.65	2.69	2.61
	Ku				*	2.51
Rice-Rice-Finger millet	K ₁	2.05	2.07	2.05	2.09	2.60
(C ₃)	K ₂	2.03	2.04	2.03	2.09	2.95
	Mean	2.05	2.06	2.04	2.09	2.06
	Ko			11	•	2.00
Rice-Rice-Cotton	K ₁	1.95	2.04	2.00	2.08	2.02
(C ₄)	K ₂	1.95	2.00	1.99	2.01	1.99
	Mean	1.95	2.02	2.00	2.05	2.01
	Ka					1.93
	Mean	-2.24	2.21	2.25	2.30	

Data not statistically analysed

S2 - K applied during NEM season, 1984

S₃ - K applied during Summer, 1985

S4 - K applied during all the three seasons

K1 - 50 per cent recommended dose of K

K2 - 100 per cent recommended dose of K

St - K applied during SWM season, 1984

S2 - K applied during NEM season, 1984

S₃ - K applied during Summer, 1985

S4 - K applied during all the three seasons

K1 - 50 per cent recommended dose of K

K2 - 100 per cent recommended dose of K

172 James Martin

gross return, the net return was lesser due to higher cost of cultivation. The reduction in cost of cultivation in rice- rice-soybean system by 15 per cent compared to rice-rice-rice system, coupled with remunerative price of soybean seed resulted in the highest net returns from rice-rice-soybean system.

Application of 50 per cent of recommended K to all the three crops in the cropping system resulted in higher gross return as well as net returns than that from K fertilization to anyone crop in the cropping systems. This was primarily due to the increased economic yield of the component crops of the systems.

The BC ratio was the highest in rice-rice-soybean system followed by rice-rice-rice system (Table 4). The results of the study clearly indicated that for high available K soil conditions of Western Tamil Nadu, application of 50 per cent recommended K fertilizer to each of the component

crops of rice-rice-soybean system was highly remunerative. In areas with abundant water supply throughout the year, rice-rice-rice system with 50 per cent K fertilizer application to each of the component crops was the best system.

Potassium fertilizer application at 50 per cent recommended dose to each one of the component crops of rice-rice-soybean system in K- rich soils of Western region of Tamil Nadu is highly remunerative. Where abundant water supply throughout the year is available, potash application is recommended at 50 per cent recommended level to each one of the crops of rice-rice-rice system for soils of high available K.

REFERENCES

SWAMINATHAN, M.S. (1981). FAI National Seminar for Achieving Fertilizer Consumption Targets and Improving Fertilizer Use efficiency. Fertilizer Association of India, New Delhi, Dec. 3-5, 1981.

(Received: December 1994 Revised: February 1995)

Madras Agric. J., 83(3): 172-176 March 1996

POTASSIUM MANAGEMENT IN RICE BASED CROPPING SYSTEMS OF WESTERN ZONE OF TAMIL NADU

G.JAMES MARTIN

Department of Agronomy Agricultural College and Researches Institute Tamil Nadu Agricultural University Colmbatore 641 003

ABSTRACT

Field experiments were conducted consecutively for three seasons at the Tamil Nadu Agricultural University, Coimbatore. Four rice based cropping systems were evaluated. Application of 50 per cent and 100 per cent recommended K fertilizer was included for the respective crops. Skipping of K application to any two of the component crops of the cropping systems and K application to all the three crops were included. The highest biomass production was recorded in rice-rice-rice system followed by rice-rice-soybean system. Half and full dose of potash produced the same biomass. Rice-rice-soybean system produced the highest rice grain equivalent. Potassium fertilizer application to all the three component crops of the cropping systems resulted in higher rice grain equivalent than that from K fertilization to any one of the crops.

KEY WORDS: Rice Based Cropping Systems, Potassium Fertilization, Biomass Production, Rice Grain Equivalent.

Recent research information amply reveals that high crop yields and intensive cropping can be sustained only through optimum use of nutrients in balanced ratios. On a gross basis, crop uptake of potassium exceeds nitrogen uptake by 60 per cent in Indian Agriculture (NCA, 1976). The entire potash requirements are met from imports. It is imperative to make use of the available potash

fertilizers to the most productive use so that each unit gives higher yield response. The FAO has conceptualised the idea of System Approach to Plant Nutrition (SPAN) (Roy and Braun, 1984). Tandon (1983), Pillai et al. (1985) and Biswas et al. (1987) suggested the fertilizer prescription for a system as a whole is economical and efficient with considerable scope of fertilizer economy. Very