SRIDHAR et al.,

REFERENCES

- HERGERT, G.W.1982. Effect of irrigation and nitrogen rates with or without nitrapyrin on corn yield and N uptake. Agron. Abst., 73rd annual meeting, Am. Soc. Agron., U.S.A. pp. 179.
- MEDERSKI, H.J. and WILSON, J.H., 1960.
 Relation of soil moisture to ion absorption by corn plants. Soil. Sci. Soc. Am.
 Proc. 24: 149-152.
- OLSEN, S.R., WATANABE, F.S. and DANIELSON R.E., 1961. Phosphorus absorption by corn roots as affected by soil moisture and phosphorus concentration. Soil sci. Soc. Am. Proc. 25:289-294.

TIMMONS, D.R. and DYLLA, 1983. Nitrogen inputs and outputs for an irrigated corn ecosystem in the north-west corn belt. spl. pub., Univ. Georgia, No. 23: 225-244.

USTIMENKO - BAKUMOVSKY, G.V. 1983.

Plant growing in the Tropics and SubTropics. Mir Publishers, Moscow. pp.
54-72.

Madras agric. J.78 (9-12) Sep-Dcc-1991

https://doi.org/10.29321/MAJ.10.A01897

EVALUATION OF PROMISING NEW WHEAT CULTURES UNDER TAMIL NADU CONDITIONS

R. VENKITASWAMY, K.P. RAMASAMI AND N. BALASUBRAMANIAN Department of Agronomy, Tamil Nadu Agriculture University, Coimbatore - 641 003.

ABSTRACT

Field experiments were conducted at Tamil Nadu Agricultural University, Coimbatore for five years from 1982-1983 to 1986-1987 to identify the best new wheat cultures suitable for Tamil Nadu conditions. The cultures PBN142, AKW 13-3, AKW 42-3, IWP 5049, MACS 2067, NI 8858, NI 8924 and WSM 22-1 produced significantly higher grain yield over the check variety HD 2189.

KEYWORDS: Wheat, Varieties, Grainvield.

In India, wheat is grown over an area of nearly 24 m.ha and involves almost all the states except Kerala. Its cultivation extends from about 9°N (Palani hills in Tamil Nadu) to above 35°N (Srinagar valley in Jammu and Kashmir). This exposes the crop to wide range of agroclimatic conditions such as temperature, humidity and photoperiods prevalent at different altitudes, soil types and physiographic features of the region during the crop season and cropping systems (Tandon and Rao 1986). Hence specific varieties have to be developed for each agroclimatic zone.

due to the regional pecularieties in wheat growth (Agarwal 1986). Therefore, experiments were conducted to identify the suitable cultures for Tamil Nadu conditions. The cultures evolved in different wheat breeding centres all over India were tested.

MATERIALS AND METHODS

Field experiments were conducted under All India Coordinated Wheat Improvement Project at Tamil Nadu Agricultural University, Coimbatore for five years from 1986-1987 to select suitable new wheat culture for Tamil Nadu conditions.

The experimental field was clayloam, with low, medium and high in available N.P and K respectively. The experiment was laid out in double latice design with three replications. The treatments comprised of cultures numbering 35, 16, 36, 36 and 36 during 1982-1983, 1983-1984, 1984-1985, 1985-1986 and 1986-1987 respectively. The seeds were sown on 10.12.1982, 14.11.1983, 29.11.1984, 30.11.1985 and 14.11.1986 in respective years. Fertilizers were applied@100:60:40 kg ha-1 NPK.respectively. Half of the N and entire P and K were applied as basal. Remaining half of the N was applied on 21st day after sowing. Six irrigations were given at critical growth stages. All other recommended cultural practices were followed. The crops were harvested during the months February and March in respective years.

RESULTS AND DISCUSSION

The data on grain yield of different cultures are presented in Table 1. In first year (1982-1983), cultures PBN 142 and AKW 13-3 produced highest grain yield and the yields were significantly higher than the check variety HD 2189. During second year (1983-1984), AKW 42-3 gave higher yield over the check. However,

the yields of all the cultures were low, when compared to the grain yields of cultures tested during 1982-1983. This was due to the unusual high rainfall (159.0 mm) at the harvesting months (February and March) which reduced the grain yield of all the cultures.

In third year (1984-1985), cultures IWP 50449, MACS 2067 and NI 8858 recorded more grain yield over the check variety. During the fourth year (1985-1986), NI 8924 produced the highest grain yield and yield was significantly more than the check variety. In fifth year (1986-1987), WSM 422-1, produced the highest grain yield of 30.2 q.ha⁻¹ and the yield was 56 per cent more than the check variety HD 2189. In general, the grain yields of many cultures were low in 1986-1987. This was due to the high mean temperature (25.4°C). Inspite of the yield reduction in other cultures, WSM 422-1 produced a grain yield of 30.2 q.ha-1. Yield reduction due to the rise in temperature was also reported earlier (Asana and Williams 1965). The varieties HD 2189, NI 5439 and HD 4502 were tested during the years 1982-1983, 1984-1985, 1985-1986 and 1986-1987. The variety HD 2189 produced comparatively higher wheat grain over the other two varieties. This indicated the potentiality of HD 2189 under Coimbatore conditions. The better performance of the above mentioned cultures in different years may be due to increased growth and yield attributes.

REFERENCES

AGARWAL, R.K. 1986. Development of improved varieties. In Twenty Five Years of Coordinated Wheat Research. Wheat Project Directorate, IARI, New Delhi. p. 34-93.

ASANA, R.D. and WILLIAMS, R.F. 1985. The effect of temperature stress on grain development of wheat. Australian J. agric. Res. 16: 1-6.

TANDON, J.P. and RAO. M.V. 1986. Organisation of wheat research in India and its impact. "In" Twenty Five Years of Coordinated Wheat Research". Wheat Project Directorate, IARI, New Delhi. p. 1-23.

1. Grain yield new wheat cultures on (Q.ha-1)

S.No.			-	1.077-0	10.7	704-1703	4	1705-1700	1980	1961-0061
4	Variety	Grain	Variety	Grain	Variety	Grain	Variety	Grain	Variety	Grain yield
	100 2189	233	HD 2189	s	IID 2189	15.7	HD 2189	50.9	110 2189	0.01
N	NI \$439	10.9	DWR 88	63	NI 5430	162	01.52 IN	200	VI 6.30	4 .
	HD 4502	21.8	N18763	4.7	HD 4502	102	HD 4502	16.1	HD460	17.5
**	HI 1078	20.0	AKW 59.2	3.2	WSM 287	11.5	N1 8924	25	DWR 39	17.0
vi s	PN ICE	26.6	DWR 89	23	DF 362	11.0	PBN 67	14,6	DWR 133	121
ů.	MACS 2130	24.5	1883 IN	7,0	PAC24	17.4	IWP 5085	8.7	MACS 2405	8.7
	מהליטון	0,01	AKW 423	2:	HI 1184	12.8	HD 2278	113	NI 9064	14.8
éo	ED 2408	201	MAILS A190	40	N18/90	13.7	HD 2347	12.6	PBN 509.6	73
	APAIL 1584	17.5	PRN 626	9 5	LI SONO	7	WSM 370	124	DWR 136	19.2
	DWR 82	253	AKW 63-1	2.3	DWR IN	121	N 8839	900	LSW.7	58.5
7	MG 513-6	21.5	NI 8668	6	MACS 2197	121	VI 8000	00 0	HD 2303	10.2
ri	BYM, -1	23.9	0918 IN	9.4	AKW 262.3	211	CPAN 2049	120	MACS 2368	104
*	NI 8533	24.8	HD 4512	5.2	AKW 178	111	DWR 124	801	200	75
š	DWR 81	21.2	NI 8729	24	NI 8858	201	HW 1042	611	AKW 771-10	
4	NI 8616	22.4	NACS 2172	4.9	PAC 36	17.2	MACS 2344	116	AKW 161	F.
7.	APAU 1562	15.1			HD 2278	12.8	MACS 2271	19.9	CPAN 2087	202
	VPAN 1956	17.0			NI 8831	15.2	NI 8960	11.7	NI 9028	180
	NI 8235	191			MACS 2067	21.0	DWR 122	19.8	HD 2434	23
8 2	DL 245.2	27.0			HD 2411	13.5	DWR 125	7.7	MACS 2410	13.2
73	AVW	77.			NI 8771	13.6	RHR 2825	5.4	Ragegaton 252	117
15	WG 24.60	10.3			N 8825	17.0	WSM 377	11.7	DWR 132	232
12	PBN 142	29.0			VII 9011	15.0	AKW 280	17.6	AKW 369-6	1.7
25	DI 95.2	31.8			100 IV		E W SI	00	NI 8949	12.9
	CPAN -6036	21.5			CDAN 1880	132	NI 8921	13.4	MP 845	18.4
27.	NI 8620	26.8			MACS 2204	28.	MI ente	0.00	DWK12	122
28	PBN 144	19.9			MP 822	3.5	MACE 2067	9 9	VI 833-1	7
ß.	NP 703	21.7			87.88 TN	2	MI SOAD		2000	3
30.	PBN 55	20.1			NI 8841	153	N 8869	751	WCMARRIE	35
	NI 8629	15.2			DWR 101	14.5	DWR 126	15.7	WCV 177	100
	NI 8128	19.1			PBN 142	17.2	BARCPKU	198	PRN 136	124
ri.	DEWR 79	Z Z			TWP 5049	21.1	PBN4	19.8	NI 9075	100
	AKW 13.3	27.6			DWR 102	121	CPAN 6086	11.9	NI 9075	9
	NI 8535	18.4			HD 2367	13.6	DWR 123	13.9	ISW 9071	8
90					DWR 103	16.2	BARCPKV 813	13.1	MACS 2369	120
(%)		56		**		7		20		27