S. dichotoma among the collateral hosts of pseudo-mosaic disease of tobacco. Wilson and Sathiarajan (1965) reported a leaf distorting virus of S. indica which was transmitted by grafting. There is no earlier report of any sap transmitted or aphid transmitted virus disease of S. Indica and hence, this forms the first record of a mosaic disease of this plant.

ACKNOWLEDGEMENTS

The senior author is thankful to the ICAR, New Delhi for the award of Junior Research Fellowship for the conduct of the study.

REFERENCES

- ANDERSON, C.W. 1959. A study of field sources and spread of five viruses of peppers in Central Florida. Phytopath, 49: 97-101.
- CHAMBERLAIN, E. 1939. Cucumber mosaic (Cucumis virus I. of Smith, 1937). N.Z.J. Sci. Tech. A., 21: 74-90.

Madras Agric. J.78, (1-4): 31-33 Jan,-Apr. 1991 https://doi.org/10.29321/MAJ.10.A01820

- COSTA, A.S. 1944. Quantitative studies with Carborundum and its use in local lesion. Phytopath., 34: 228-330.
- DEIGHTON, F.C. 1938. Tobacco leaf curl in Sierra Leone. Pap. Third. W. Afr. Agr. Conf., 1: 7-9.
- JOSEPH, P.J. and MENON, M.R. 1978. Studies on the mosaic disease of snake gourd (Trichosanthes anguina L.) Agric. Res. J. Kerala, 16: 148-154.
- MARIAPPAN, V. and NARAYANASWAMY, P. 1977. Characterisation of viruses affecting weeds. I. Mosaic diseases. Madras Agric. J., 64: 106-112.
- THORNBERRY H.H., 1935. Effect of phosphate buffer on infectivity of tobacco mosaic virus. Phytopath., 25: 618-629.
- TOMLINSON, J.A. CARTER, A.L. DALE, W.T. and SIMPSON, C.L. 1970. Weed plants as sources of cucumber mosaic virus. Ann. appl. Biol., 66: 11-16.
- VAN DER LAAN, P.A. 1940. Whitely and eupatorium as causes of Pseudo-mosaic, Vlugschr. Dell. Profst, Madan, 67: 4.
- WILSON, K.I. and SATHIARAJAN, P.K. 1965. A new leaf distorting disease of Stachytarpheta indica. Vahl. Scl. Cult., 31: 251-252.

FIELD SCREENING OF SHORT DURATION PIGEONPEA LINES FOR RESISTANCE TO BACTERIAL LEAF SPOT AND STEM CANKER

(Xanthomonas campestris pv. cajani)

G. ARJUNAN, R. SAMIYAPPAN and K. THIYAGARAJAN National Pulses Research Centre, Vamban, Pudukkottai District.

ABSTRACT

Thirty five determinate and non-determinate pigeonpea types of early duration were screened against bacterial leaf spot and stem canker (Xanthomonas campestris pv. cajani). ICPL 87 and ICPL 85017 in determinate and ICPL Nos. 84048, 85049, 85049 and ICPH.22 in non-determinate types were resistant to bacterial leaf spot. Among these lines, the non-determinate line ICPL 85049 showed resistant reaction to stem canker also. The other five lines showed moderate resistance to stem canker. In general, red-flowered types, whether determinate or non-determinate, were found more susceptible than yellow-flowered types.

KEY WORDS: Pigeon pea, Varietal screening, Bacferial lealspot, Stem canker.

Bacterial leaf spot and stem canker of pigeonpea were reported to occur in different parts of India (Kulkarni et al., 1950, 1952; Gaikward and Kote, 1981; Reddy et al., 1987) and Sudan and Panama (Nene et al., 1984). The disease usually appears between July and

Table 1. Reaction of some early pigeonpea lines to bacterial lef spot and stem canker at Vamban during Khall 1987.

Entries 1	Growth Habit 2	Bacterial leaf spot scale 3	Bacterial stem canker scale . 4	Yield (Kg/ha) 5
ICPL 87	DT	2.3	MR	824
ICPL 151	DT	5.7	s	799
ICPL 83022	DT	5.5	s	643
ICPL 83024	DT	5.2	s	433
ICPL 84031	DT	5.6	s	774
ICPL 84032	DT	6.3	s	838
ICPL 84048	NDT	2.9	MR	628
ICPL 84052	NDT	4.9	s	442
ICPL 85012	DT	8.4	s	759
ICPL 85014	DT	5.2	s	687
ICPL 85016	DT	7.8	s	635
ICPL 85017	DT	2.1	MR	711
ICPL 85031	DT	7.1	s	415
ICPL 85036	NDT	3.5	S	420
ICPL 85045	NDT	4.2	s	528
ICPL 85046	NDT	3.2	s	502
ICPL 85048	NDT	2.0	MR	653
ICPL 85049	NDT	1.9	R	673
ICPL 85050	NDT	3.5	s	446
ICPL 85051	NDT	4.7	s	278
ICPL 85054	NDT	4.4	s	565
ICPL 85057	NDT	6,9	s	524
ICPL 86005	DT	5.1	s	315
ICPL 86007	DT	7.8	s	713
ICPL 86012	DT	7.4	s	773
ICPL 86024	NDT	3.5	s	536
ICPL 86029	NDT	6.1	s	358
ICPH 9	DT	8.1	s	667
ICPH 10	DT	5.9	s	902
ICPH 11	NDT	6.2	s	505
ICPH 22	NDT	2.0	MR	447
MANAK	DT/NDT	6.7	S ⁻	547
T 21	NDT	3,1	s	601
UPAS 120	NDT	3.1	MR	538

Stem Canker scale

R = Stem lesions upto 2 mm in size;

MR = Stem lesions 2 - 20 mm;

S = Stem lesions > 20 mm;

Plant type

DT = Determinate

NDT = Non-determinate

Bacterial leaf spot scale

1 = Less than 1% of leaf area affected

3 = 1.1 - 5% of leaf area affected

5 = 5.1 - 25% of leaf area affected

7 = 25.1 - 50% of leaf area affected

9 = Above 50% of leaf area affected

September, when the relative humidity is 80 to 90% and temperature ranges from 24°C to 31°C (Kulkarni et al., 1952). A severe outbreak of the disease was observed in determinate and non-determinate type of early pigeonpe lines raised under adaptive yield trial during Kharif, 1987 at National Pulses Research Centre, Vamban, Tamil Nadu and the result of screening is reported.

MATERIALS AND METHODS

Eighteen determinate lines and seventeen non-determinate lines of pigeon pea were evaluated for their reaction to the bacterial leaf spot and stem canker. The crop was raised in Kharif, 1987 fertilised with 25 kg nitrogen as urea and 50 kg phosphorus as superphosphate. Spacing adopted was 30 cm x 10 cm. The average minimum and maximum temperatures were 37.2°C and 27.5°C respectively during the crop period. Relative humidity was 89.4 per ent. The incidence of the disease in different entries are presented in Table 1.

RESULTS AND DISCUSSION

ICPL 87 and ICPL 85017 in determinate and ICPL 84048, 85048, 85049 and ICPH 22 in non-determinate group were found resistant to bacterial leaf spot. Among these lines, the non-determinate line ICPL 85049 showed resistant reaction to stem canker also. The other five lines showed moderate resis-

tance to stem canker. In general, red flowered types, whether determinate or non-determinate (ICPL 85012, 85057, 86005, 86007, 86012) were found more susceptible than yellow flowered types. Mahrshi (1986) reported S.80 to be moderately resistant and Reddy et al., (1987) reported that ICP 12807, ICP 12848, ICP 12849, ICP 12937, ICP 13051, ICP 13116 and ICP 13148 to be field resistant. They also reported lines with green stem colour showed higher susceptibility than the lines with purple or sun red stems. Among the field resistant lines, ICPL 87 recorded high yield of 824 kg/ha.

REFERENCES

- GAIKWARD, B.M., and KOTE. S.S. 1981. Bacterial leaf-spot and stem canker of pigeonpea (Cajanus cajan) caused by Xanthomonas cajani. Indian J. Mycol. Pl. pathol., 11: 50-56.
- KULKARNI, Y.S., PATEL, M.K., and ABHYANKAR, S.G. 1950. A new bacterial leaf spot and stem canker of pigeonpea. Curr. sci., 19: : 384.
- KULKARANI, Y.S., PATEL, M.K. and ABHAYANKAR S.G. 1952. A new bacterial leaf spot and stem canker of pigeonpea.Indian Phytopath., 5:21-22.
- MAHRSHI, R.P. 1986. A report on three pigeonpea diseases in Rajasthan. International Pigeonpea Newsl., 5: 32-34.
- NENE, Y.L., SHEILA, V.K. and SHARMA, S.B. 1984. A worked List of Chickpea (Cicer arietinum L.) and Pigeonpea (Cajanus cajani (L.) Millsp.) Pathogens. Patancheru A.P. 502 324, India: ICRISAT, 19 pp.
- REDDY, M.V., RAJU, TN., and NENE, Y.L. 1987. Field screening of pigeonpea germplasm for resistance to bacterial leaf spot and stem canker. International Pigeonpea Newsl., 6: 62-65.