OUALITY OF AGGREGATUM ONION CV. CO 4

M. JAYABHARATHI

Department of Seed Technology, Tamil Nadu Agricultural University, Coimbatore-641 003

ABSTRACT

The CV. Co 4 aggregatum onion crop required 75 kg/ha in each of N, P and K fertilizers for realising more bulb yield with associated more recovery of large size bulbs, better viability and vigour. Large size bulbs performed better under storage for a longer period.

Keywords: Doses, N. P and K, Aggregatum Union LV CO. 4 yield quality.

The country onion Allium cepa L. var. aggregatum Don or Pungell onion, which is widely cultivated in Tamil Nadu is one of the oldest and popular cultivated vegetable crops. It is much valued for its flavour and nutritional quality in supplying minerals and trace elements. The study of seed bulb production is very sporudic and hence the study on quality seed bulb production was taken at Agricultural Research Station, Tamil Nadu Agricultural University, Bhavanisagar.

MATERIALS AND METHODS

A field trial was laid out on onion cv. Co 4 with the following levels of NPK fertilizers for three times during September, 1985, December 1985 and August 1986. The fertilizer levels were 0, 50 and 75 kg in each of N, P and K/ha. The experiment was laid out in a factorial randomised block design (FRBD) with two replications.

Observations such as bulb yield, percentage recovery of different grades of bulb, sprouting and vigour paramreters were recorded and the data

were statistically analysed. The different grades of bulb were then forwarded for storage and monthly observations on bulbs viability and vigour recorded.

RESULTS AND DISCUSSION

The treatments applied with 75 kg/ha, in each of N, P and K recorded the highest yields of 12162 kg 11944 kg and 14925 kg of bulbs respectively in first, second and third seasons, which were 55-75 per cent over the control (Table 1). Achar et al., (1984) reported higher yield of bulb with 80 kg/ha in each of N and K. Deshmukh et al. (1984) regostered higher yield with 80 kg P and 37.5 kg K/ha.

BULB SPROUTING

the percentage of sprouting of bidbs was significantly higher recording 83, 84 and 92 per cent in the treatments applied with 75 kg/ha in each of N, P and K as against 55, 56 and 59 per cent in control for the respective three crops (Table 2).

Table 1. Yield of onion (kg/ha)

b			, I crop			II crop	-	-	III crop	
	1	ко	K1	K2	ко	K1	K2	ко	К1	K2
NO	PO	5011	5355	5568	4555	5055	5222	5850	6131	6420
-	P1	5400	5933	5866	5144	4833	5822	6218	6432	6652
	P2	5677	5790	5940	5555	5404	5888	6281	6466	6627
NO	PO	5844	5742	5869	6111	5666	5822	6526	6474	6572
,	P1	5666	7111	6804	5777	7244	7177	6808	8107	7787
	P2	6693	7055	7944	6622	7066	7777	7718	7910	8743
NO	PO	7322	7251	7166	7244	7144	7277	7906	7968	8337
	P1	-7155	7966	8795	6911	7666	8511	8218	9568	0031
	P2	9833	11066	12162	10055	11166	1944	10993	12131	14925
-				Comparis	ion of Sig	gnificant e	ffects		,	
		N	ì	P	K	$N \times P$	N:	< N	$P \times K$	$N \times P \times K$
	1 Crop	88.8	38**	88.88	88.88**	177.77*	177	.77**	177.77	266.66**
	II Crop	93.3	32 5	93.32	93.32	184.4	184	4	184.4	322.4

105.68

DRY MATTER PRODUCTION

III Crop

105.68

The treatment with increased dose of N, P and K viz., 75 kg each/ha recorded significantly higher values over all other treatments (2.913, 2.790 and 2.850 per 10 plants respectively in three crops). Untreated control recorded a reduction of 24.2 15.8 and 25.9 per cent dry matter for the respective three crops (Table 3)

105.68

VIGOUR INDEX (VI)

The vigour indices were significantly higher for bulbs obtained from plots applied with the highest N, P and K doses (75 kg each/ha) registering a IV value of 242, 255 and 269 respectively in three crops as against 127, 140 and 127 in control for the said three crops respectively (Table 4).

BULB STORAGE

212.4

212.4

The monthly evaluation of stored bulbs revealed that in storage bulbs lost weight irrespective of the size as recorded by Khurana and Singh (1984) It was found that the loss in weight in respect of bigger size bulbs was more after seven months of storage. The bigger size bulbs performed better in long term storage.

212.4

305.0

Initial weight of bulbs recorded by big, medium and small bulbs was 114.09, 63.26 and 31.07 per 25 bulbs. The bulbs at the end of storage period recorded a weight of 5.78, 3.93 and 2.71g respectively for big, medium and small bullbs.

After 8 months of storage, the big, medium and small bulbs recorded 6, 3 and 2 per cent respectively.

%
sprouting
Bulb
6
able

		-	Crop			II Crop			III Crop	
		KO	7.	K2	К0	72	K2	KO	K1	K2
000	P0	35	57	62	26	28	19	29	64	71
		(47.82)	(49.02)	(51.94)	(48.45)	(49.60)	(51.35)	(50.18)	(53.13)	(57,42)
	ь1	65	63	62	61	61	62	. 49	99	73
	-	(53.73)	(62.54)	(51.94)	(51.35)	(51.35)	(51.94)	(54.94)	(53.33)	(58.69)
	P2	92	90	65	09	. 64	64	89	68	75
		(47.87)	(60.77)	(63.73)	(56.77)	(53.13)	(53.13)	(85.55)	(55.55)	(60.00)
Ľ.	PO	. 69	70	69	62	-63	63	72	78	28
	-	(56.17)	(56.79)	(56.17)	(51.94)	(52.54)	(52.54)	(58.05)	(62.03)	(84.16)
-	L	20	73	69	64	63	64	74	79	83
		(66.79)	(58.69)	(57.42)	(63.13)	(53.73)	(54.33)	(59.34)	(62.73)	(65.85)
-	P2	. 70	72	73	65	65	65	7.7	18	84
	· ·	(66.79)	(58.05)	(69'85)	(53.73)	(53.73)	(53.73)	(61.34)	(64.16)	(66 42)
N2 P	P.0	7.1	67	73	65	64	99	78	83	82
		(57.42)	(54.94)	(58.69)	(53.73)	(53.13)	(54.33)	(62.03)	(65.65)	(67.21)
7	P1	71	. 73	74	70	73	. 92		85	88
	:	(57.42)	(58.69)	(59.34)	(56.79)	(68.69)	(60.67)	(64.16)	(67.21)	(69.73)
7	P2	26	-64	83	78	81	84	84	86	- 92
		(60.67)	(62.73)	(65.65)	(82.03)	(64.16)	(66.42)	(66.42)	(66.42)	(73.57)

(Values in paranthesis are angular transformed values)

Comparision of significant effects N, P, K NxP NxK NxP Op 1.1*** 2.2 Op 0.98** 2.1	Com		Crop	II Crop	Crop
of significa P, K 1.1** 1.2** 0.98**	parision	z			
	of significa	Р, К	1.144	1.2#*	0.98**
		NXP	1		

Table 3. Dry matter production (g/10 plants)

_										
			I crop			II crop			III crop	
-		- ко	K1	К2	ко	К1	K2	ко	K1	K2
NO	PO	2.208	2.242	2,370	2.517	2.564	2.572	2.113	2.223	2.308
	P1	2.208	2.283	2.408	2.541	2,586	2.616	2.162	2.238	2.473
	P2	2.370	2,409	2.478	2.543	2.618	2.719	2.218	2.373	2.548
N1	PO	2.383	2.470	2.533	2.602	2.632	2.808	2.338	2,445	2.605
	P1	2.523	2.608	2.675	2.619	2.642	2.859	2.393	2.535	2.686
	P2	2.558	2.625	2.728	2.632	2.690	2.899	2.460	2.583	2.710
N2	PO	2.574	2.650	2.782	2.673	2.703	2.912	2 535	2.613	2.730
	P1	2.715	2.768	2.871	2.730	2.814	2.928	2.608	2.641	2.810
	P2	2.815	2.831	2.913	2.790	2.873	2.990	2.697	2.708	2.850

Comparision of Significant effect

NPK

1 Crop 0.04**

II Crop 0.045 ***

III Crop 0.06##

Table 4. Vigour Index Value

			1 crop			II cros)		III crop	
		ко	K1	K2	ко	К1	К2	ко	К1	K2
(0	P0	127.7	148.1	143.5	140.5	149.4	156.9	127.0	142.2	164.0
	P1	144.7	148.5	130.3	156.4	159.4	156.2	145.2	148.6	181.1
	P2	144.7	162.6	164.4	165.6	169,6	162.8	151.0	161.2	191.1
K1	P0	172.9	176.0	176.6	165.0	181.9	167.6	168.6	168.1	191.0
	P1	190.3	191.1	185.4	164.9	178.1	174.0	177.1	200.1	223.1
	P2	189.1	188.4	185 0	178.5	182.0	186 9	189.1	209.8	228.2
К2	PO	177.6	203.1	192.8	173.9	179 6	191.1	198.2	217.2	233.2
	P1	202.0	213.8	215.4	199.8	224.0	218.9	211.1	224.1	247.2
	P2	213.9	223,6	241.8	232.3	251.1	255.4	227.2	233.2	269.0

Comparison of Significant effect

N. R. K N. P. N.K. P.K

1 crop - 16.65**

33.48**

II crop 18.22** -III crop 20 16** 37.10** 40.26**

Table 5. Storage studies

		310			Period	of Testing					
rarameter size of bulb	Size of B	P0	P1	P2	P3	P4	P5	P6	P7	P.8	P9
Bulb	Big	114.090	108.660	92.950	73.730	67.350	65,610	46.660	26.220	14.820	5 78
Weight	Medium	83.26	60.38	49.31	34.21	33.47	31.82	27.98	12.55	7.91	3.93
(ā)	Small	31.07	28.84	19.28	14.83	13.87	12.79	10.53	5.55	2.75	2.61
Bulb	Big	93	92	86	78	78	75	69	57	14	# # 9
Sprouting		(74.66)	(77,08)	(88.03)	(62.03)	(62.03)	(80.00)	(56.17)	(49.02)	(21.97)	(14.18)
(%)		95	94	90	79	7.8	76	69	51	6	n
	Medium	(77.08)	(75.82)	(71.57)	(62.73)	(62.03)	(60.60)	(56.20)	(45.57)	(17.46)	(9,97) **
		100	66	95	83	81	79	78	42	9	2
à	Small	(90.00)	(88.19)	(77.08)	(65.65)	(64.20)	(62.73)	(62.03)	(40.40)	(14.13)	(8,13) **
Dry matter	Big	2.800	2.700	2.350	1,970	1.840	1.720	1.230	1.050	0.601	
Production(g) Medium	g)Medium	2 650	2.380	2.280	1.780	1,700	1.630	1.060	1,000	0.423	
	Small	2.560	2.270	2.440	1.620	1.580	1.480	1.050	0 570	0.20	
Vigour	Big	261.21	258.55	246.17	165 09	142,65	139.91	84,41	60.53	8.13	
Index	Medium 254 01	254 01	235.27	230.72	158.75	137.91	133,84	73.42	51.62	4.27	
value	Small	250.48	225,61	208,09	154.81	139.41	136.97	73.35	24.16	1.23	
		Ruth	Bulb weight (a)	Bul	Bulb sorouting (%)	(ac)	Drumattet	Drumattot Production			-
			181		fire and the same	100	-	100000		vigour index value	value
CD Period	þ		1.05***	, 	0.82**		0.0	0.035**		4.4**	
Grade	6		2.46∜#	,	1.20**		0.0	0.06**		8.5**	
Perio	Period x Grade		6.2**	.5.%	2.62**		0.1	0.14*8		16.02**	

ranged from 3.6 to 62.5% in big size, 10.2 to 62.3% in medium size and 11.3 to 77,7% in respect of small bulbs at the end of 8 months of storage period. The vigour index value showed a significant loss for size grades of bulbs in storage Intially, the VI value was found to be 261, 254 and 250 in big, medium

and small bulbs respectively which at the end of 8th month of storage gave a VI value of 8.13, 4.27 and 1.23 respectively (Table 5).

The study revelaed that for long term storage, the big size bulbs of CV CO 4 aggregatum onion have to be stored in a dry condition.

REFERENCES

Achar, H. P., Patil, V. S. Reddy, M.R. and Ansari M. R., 1984. Effect of moisture regime and fertilizer levels on yield of onion. Curr. Res. 13 (4-6): 29-30.

Deshmukh, V., Patil, M. M. and Wagre, P. K. 1984. Field study on response of onion to phosphorus, pottassium and iron in vertisol. Punjabrao Krishi Vidyapeeth Research Journal 8. Hort. Abst. 1: 312.

Khurana, S. C. and Singh C. B. 1984. A note on loss in weight during storage of onion bulbs Haryana J. Hort. Science, 13: 186-188.

Madras Agric. J. 76 [3]: 155-162 March, 1989

EVALUATION OF EXPERIMENTAL DESIGNS TO TACKLE INTERPLOT DISPERSAL OF INSECTS

P. R. RAMACHANDER K. SRINIVASAN G. S. P. RAO and P. N. KRISHNAMOORTHY
Indian Institute of Agricultural Research, Banglore-560 089

ABSTRACT

Efficacy of 0.01% fenvalerate, 0.07% endosulfan and 0.1% dichlorvos for the control of Plutella xylostella on cabbage was evaluated using three experimental designs viz., randomized block, serial block and exploded block design. The results indicate probability of incorrect inferences that could be drawn for efficacy reports when randomized block design and serial block design are followed due to interplot movement of insects. Based on the results obtained, suitability of adopting modified exploded block design which has limited interplot movement has also been indicated for testing insecticides with varying efficacy.

Keywords: Experimental designs, Dispersal of insects, Insecticides

Entomologists are often confronted with problems relating to change in dispersal of insect pests in an experimental field (Taylor, 1987). These are usually triggered by an insecticidal application. Sometimes, unsprayed control plots may provide a source of infestation, which can affect population