Medres Agric. J. 73 (8): 457-465 August, 1986

SIMULTANEOUS SELECTION MODEL FOR PLANT SELECTION IN GREENGRAM

M. MURUGESAN¹, K. P. DHAMU² and R. RATHNASWAMY²

Simultaneous seletion model based on Discriminant Function was applied to select the genotype out of 63 greengram genotypes. 16 different sets of assigned weights were tried in the model to select the best genotype. The genotype LM 222 was selected as the best genotype by the model in 13 sets of weights out of 16 sets of weights.

Selection of promising genotypes for further breeding programme in a given set of genotypes is an important aspect in plant breeding. The selection of genotypes based on the phenotypic values of plant characters is seldom successful. Smith (1936) has suggested a model based on discriminant function to select genotypes considering (i) phenotypic values; (ii) genotypic values of the different characters responsible for yield simultaneously. Goulden (1962) has given a worked out example with two sets of assigned weights for selecting genotypes without attributing any reason for assigning such weights. There is little work regarding the methods of assigning other weights. Therefore, different methods of assigning weights in Smith's model has been attempted in the present study in greengram (Vigna radiata L) with the following objectivies :

- To select the best greengram genotype from the given set;
- To verify whether the same genotype is being selected as the best in different methods of assigning weights to the plant characters.

MATERIALS AND METHODS

The data on 63 greengram genotypes obtained from field experiments conducted at Tamil Nadu Agricultural University during monsoon '82 have been used in the present study. Randomised block design was adopted in the experiment with two replications. Five plants of each genotype were selected at random in each replication and observations were made on the following eleven characters:

1) Seed yield	(x_t)
2) Leaf weight	(x)
3) Stem weight	(x ₁)
4) Root weight	(x4)
5) Leaf area	(xs)
6) Total dry matter	
production	(Xa)
7) Number of pods	(X1)
8) 100 seed weight	(Xe)
9) Number of clusters	(x,)
0) Number of branches	(X10)
1) Plant height	(x_{11})

The means of five plants values in each replication were used for further statistical analysis. The 63 genotypes were:

¹ and 2: Professor and Assistant Professor in Department of Agrl. Statistics, TNAU, Coimbators-3

^{3:} Professor and Head, National Pulses Research Station, Vemban.

1) PLS 269	32) PLS 304
2) PLS 327	33) PLS 322
3) AC 176	34) PS 414/1
4) AC 300	35) ML 26
5) MDU 2984	36) LM 35
6) LM 7	37) LM 254
7) LM 21	38) LM 263
8) LM 23	39) LM 279
9) LM 72	40) LM 361
10) LM 87	41) LM 366
11) PLS 266	42) CO 3
12) PLS 300	43) PLS 41
13) PLS 311	44) M 1
14) PLS 328	45) M 3
15) PLS 337	46) M 9
16) PLS 343	47) MS 8909
17) AC 205	48) LM 167
18) ML 26/10/3	49) LM 218
19) LM 89	50) LM 222
20) LM 85	51) LM 370
21) KM 1	52) LM 449
2300 C 202 C 2	53) NA 5
22) PLS 298	54) ML 1
23) MDU 1945	55) LM 150
24) MDU 2106	56) LM 152
25) LM 14	57) LM 220
26) LM 15	58) LM 228
27) LM 24	59) LM 275
28) LM 170	60) LM 360
29) LM 244	61) LM 419
30) LM 253	62) LM 469
31) LM 459	63) CO 4
1*	

The Smith's model involves finding the coefficients b₁, b₂.... b_p in the Discriminant Function,

$$l=b_1 \times_1 + b_2 \times_2 + \dots + b_p \times_p (1)$$

where $x_1 \times_2 \dots \times_p$ are the characters

taken for study. The values of bi b,.....bp are obtained from the following equation

$$\underline{b} = P^{-1} Ga_{\underline{a}} \tag{2}$$

where b is the vector of Co-efficients by by to be estimated

P-1 is the inverse of phenotypic variance-covariance matrix G is the genotypic variance-Covariance matrix

a is the vector of coefficients assigned to each character.

The equation (2) is obtained such that the correlation between genotypic worth and phenotypic worth is maximum. (Singh and Choudhary, 1979).

After finding b...be from equation (2) they are substituted in the Discriminant Function (1)

The mean values of x₁ x,...x_p for each genotype are substituted in equation (1) and the resulting value is called selection criteria for the corresponding genotypes. The selection criteria values are ranked and the genotype taking the first rank will be adjudged the best genotype. The expected genetic advance in selection through Discrimination Function is estimated by the formula.

$$X = K \times \frac{b^t G \underline{a}}{\sqrt{b^t P b}}$$

(Singh and Choudhary, 1979), where, k is the standard normal value for the percentage of genotypes selected.

If the genotypes were selected through direct selection based on their importance (i.e weights) then the expected genetic gain is estima.

Table 1: The description and values of different assigned weights

Set No.	No	Description of the set	-			Assic	Assigned weights	ahts		Ö		i.	
Š			T I		še	9,0	36	96	3,	*c	90	910	91.
, "		Equal weights	44	হ		-	5	<u> </u>	-	- <u>-</u>	-	-	77
	- 1	Reciprocal of grand means	0.0856	0,2837	0.2592	1.2488	0.0021	0.0399	0.0283	0.2569	0.0972	0.5990	0.0265
(7)	22	Reciprocal of SDs	0.1475	0.4058	0.3179	2.5691	0.0027	0.0671	0.0507	1.2826	0.1745	1,0014	0.0974
	22	Error variance	15.0209	1.8890	2,8666	0.0382	3,4656	66.128	115,83	0.0789	8.2037	0.2928	23.0496
***	15	Co-eificient of variation	33.1500	38.987	43.885	24.805	39.836	32.470	30.411	7.2167	27.632	30.249	12.7208
9		Unity to at & zeroes to others	+	0	0	0	0	0	0	0	٥	0	0
	2.7	Unity to as & zeros to others	0	37	0	0	0	0	0	0	0	0	0
30		Unity to as & zeroes to others	0	0	¥	0	0	0	0	0	0	0	0
5	6	Unity to at & zeroes to others	0	0	•	∓	0	0	0	0	0	0	0
32	.01	Unity to ag & zeroes to others	0	0	0	0	· ····	0	0	0	o	0	0
***	21.	Unity to as & zeroes to others	0	0	0	0	٥	-	٥	0	0	0	0
7	12.	Unity to at B zeroes to others	0	۰	0	٥	0	0	.) - 1	0	0	0	0
72	13.	Unity to as & zeroes to others	0	0	٥	٥	0	0	٥	-	0	0	0
ř	14.	Unity to as & zeroes to others	0	0	0	0	٠	0	0	0	· ,- ;	0	0
-	15,	Unity, to a ₁₀ & zeroes to others	0	0	•	0	0	0	0	0	0	-	0
-	16.	Unity to ayı & zeroes to others	0	•	0	0	0	0	0	0	0	0	·
			27 (27)										

Table 2: The set number of weights and the values of b's in each set

No.	each set	p,	p,	r,	å	p,	b, b, be	b,	p,	p)	pic	ιίq
_ ~~	Equal weights	-22.5555	0.4124	21.5288	288.557	0.4723	-6.8120	7.0131	33.8355	5,2521	-9.3590	12.0172
37	Reciprocal of		1000	3								1000
en)	grand means	-0.1248	-0.4402	0.4189	2.9717	0.0065	-0.1144	0.0744	0,4073	0.1418	0.2305	0.127
50	Reciprocal of SDs	- 0.2066	-0.7662	0.7034	4.8823	0.0108	-01890	0.1216	1,3260	0,2416	0.4331	0.2290
175	Error variance	-757338	274826	598731	8949390	13710.1	-194808	208933	1154680	113600	-293357	371598
arti a m	Coefficients of						*±.					
	variation	-894.137	80.5678	815.731	11184.3	18.0918	-258.53	271.86	1343.72	188.34	-259.83	158.9
T.	Unity to at and					1000	6.0000000000000000000000000000000000000	100000000000000000000000000000000000000	77.000000	A 2000 CO	70000	
377	zoroes to others	0,1256	-0.8038	0.4953	3,4694	0.0071	-0.1653	0.0950	0.3838	0.1466	-0.0453	0.1185
15	Unity to as and		4			120000000000000000000000000000000000000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000000	77.000.000		200	
ea.	zeroes to others	-0.0207	0.1191	0.1199	1.4780	0,0029	-0.0841	0.0152	0.0542	0.0350	-0.0349	0.0725
77 S	Unity to a ₃ and											-
177	zeroes to others	-0.0113	-0.3917	0.5334	2.1182	0.0040	-0.1221	0.0257	0 3103	0.0859	-0.1021	0.0668
	Unity to as and		í			-						
<i>ा</i> ड ।	zeroes to others	-0.0147	-0.0349	0.0356	0.3143	0.0005	-0.0066	0.0051	0.0035	-0.003#	-0.0151	0.0117
ાં. •	Unity to as and						. 4.57 June 14.		100000000000000000000000000000000000000	7444		
	zeroes to others	-21.851	7.9470	17.2702	253.181	0.3955	-5.6195	6.0253	33.3209	3.2750	-8.4524	10.7325
7.7° . 180	Unity to as and		1、1、1の1の1の1の1の1の1の1の1の1の1の1の1の1の1の1の1の1		0.0000000	* NAV.	2000	1000	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	96050000	140,000,000	2000
100	zeroes to others	-0,1889	-2.0126	1,0605	9.6951	0.0197	-0.2464	0.2046	0.9416	0.3121	0.1160	0.2991
12.	Unity to at and	*			00000000	1.0	A COMPANY OF THE PARTY OF THE P	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	10000	-
65	zeroes to others	-0.4850	-3.7457	8.9879	0.0497	0.0304	-0.2837	0.6021	-1.2115	0.5916	-0.5917	0.0822
	Unity to as and	=,			Ĭ.	•			~	+	'n	7.
et Sir	zeroes to others.	-0.0145	-0.0122	-0.0315	-0.0137	0 0004	0 0004 -0.0038	0.0033	0.8846	0.0020	0.0150	-0.0005
7	14. Unity to as and zeroes to others	-0.2537	-0.4715	0.3413	-1.5120	0.0050	-0.1160	0.0825	-0.1272	-0.8359	-0.8359 - 0.5220 - 0.0502	-0.050
	15. Unity to all and zeroes to others	-0.0395	-0.0698	0.0112	0.2184	0 0004		0.0062	-	0.0028 0.0033	0.6747. 0.0127	0.012
	16. Unity to all and	¥.										
	zeroes to others	0.1807	-0.1118	0.6646	5,5591	0.0039	-0.2699 0.0527	-0.0527	0.7373	0,1746	0.1746 -0.2913	0.561

ted by the formula (Prem Narain et. al., 1979)

$$Y = k \times \frac{a^1 G a}{V a^1 P a} \dots (4)$$

rne expected genetic gain in selecting genotypes through discriminant function than through direct selection is given by the formula (Prem Narain et al., 1979).

$$(X/Y-1) \times 100$$
 (5)

The values of p-1 and G in equation (2) are unique for a given set of data. But the values of a, a... aj...ap viz., the weights to the characters X1, X1... X1...Xp respectively are not uniquely defined. It is to be assigned outside the given data. For example, if all the characters X, X, X,...Xi ..Xp are to be assigned equal weights, then $a_1=1$, $a_1=1$, ... $a_i=1$... ap = 1 should be assigned. Suppose the weightage is to be given only for x_1 and not for x_2, x_3 ... x_1 ... x_p then $a_1 =$ 1, $a_1=0$, ... $a_j=0$... $a_j=0$ should be assigned. In general, if weightage is to be given only for xi and not for other characters then at should be taken as 1 and other a's should be taken as zeroes. The different weights assigned to each character in the present study are furnished in Table 1.

RESULTS AND DISCUSSION:

The values of bi, bi...bi, estimated from each set of assigned weights are furnished in Table 2. The ranks of the selection criteria values of the genotypes and the expected genetic gain due to selection through Discriminant Function than through straight selection are furnished in Table 3.

The results in Table 3 revealed that the Genetype LM 222 ranked first almost in all sets of assigned weights except in set-12, set-13, and set-15. In set-12, the assigned weights were, 0,0,0,0,0,1,0,0,0,0, for X1, X1, X5, X1, X5, X6, X7, X8, X9, X10 and X11 respectively. This set of assigned weights implies that importance was given only to the character x2, viz., "Number of Pods per plant". The failure of LM 222 to take first rank in set-12, might be that with respect to the character "Number of pods per plant" the genotype might not be the best among the 63 genotypes. The expected genetic gain in selecting genotypes through Discriminant Function than through straight selection was 8.13 per cent by assigning the weights to the plant characters in greengram as in set-12. The genotype M3 took the first rank in assigning the weights as in set-12. There was evidence from the data that the ge notype M3 might be the best genotype if plants were selected through Smith's model of Discriminant Function by assigning importance only to the character "Number of Pods per plant" among the eleven characters in greengram. There is little information in Discriminant Function whether the same genotype would be the best genotype at all locations and seasons. The genotype LM 222 took the second rank when the assigned weights were as in set-12, which indicated that LM 222 is a better genotype if not the best.

LM 222 failed to take first rank in set-13 and this indicated that there was evidence in the data that it might not be the best genotype if plants were

Table 3: Ranks of selection criteria values and genetic gain

	Genotypes	Set	Set	Set	Set	Set											
-		-	2	e	4	ភេ	9	7	80	6	9	=	12	13	7.	<u>‡</u>	16
÷	PLS 269	17	23	25	17	17	25	21	31	22	17	23	22	62	20	31	23
ri.	PLS 327	42	43	14	40	4	37	43		39	40	39	43	7	45	42	43
က်	AC 176	33	34	31	33	35	40	31	38	36	33	38	54	10	13	4	33
4	AC 300	37	38	43	38	37	30	42	42	33	35	37	18	63	11	44	20
ດ	MDU 2984	22	27	22	21	22	39	20	23	28	21	32	57	2	62	17	42
ģ	LM 7	20	12	23	20	20	26	16	25	20	20	24	30	57	30	12	13
۲	LM 21	47	52	51	47	47	53	50	57	53	47	54	52	16	31	36	54
αĵ	LM 23	6	16	16	00	6	19	10	16	10	œ	4	4	34	21	-50	8
6	LM 72	38	40	40	37	38	45	36	45	40	37	42	47	47	56	9	38
10.		19	25	28	18	19	27	11	24	19	138	27	23	90	22	53	12
Ξ.	PLS 266	60	23	20	60	9	60	09	61	61	9	61	61	o	19	67	23
12.	PLS 300	28	62	63	28	28	63	57	63	62	38	63	62	39	57	61	58
13	w	34	41	38	32	33	42	34	35	31	32	41	53	-w	54	49	30
14.	PLS 328	59	28	58	59	59	28	59	28	28	59	28	99	00	28	58	28
12	PLS 337	30	29	27	28	30	31	27	28	32	28	31	. 38	9	32	8	34
16.	PLS 343	28	32	34	25	26	33	26	33	25	25	33	34	29	39	37	33
17.	AC 205	62	61	9	62	62	59	62	9	09	62	90	59	9	60	59	9
18	ML 26/10/3	63	63	62	63	63	62	63	62	63	63	62	9	20	59	62	63
19.	LM 84	43	44	10	43	43	44	37	41	41	43	44	41	61	37	33	37
20,	LM 85	61	60	61	61	61	19	61	69	59	19	29	28	28	22	00	62
21.	KM 1	44	47	48	42	44	23	9	49	46	42	20	46	27	44	46	47
22.	PLS 298	3	35	32	3	31	34	29	23	29	31	34	36	20	35	. Te	22
23,	MDU 1946	55	26	47	52	55	57	56	47	56	52	56	63	7 ===	63	63	61

1							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				200			1	1	7.1	
- 1	1 2 3 4	-	7	ε.	4	9	9	7	89	Ø.	10	F	12.	13	14	15	1.6
24	MDU 2106	51	51	20	20	51	48	51	20	8	20	49	45	30	47	43	- 46
22	LM 14	10	13	13	9	10	20	6	13	œ	6	15	25	22	27	23	7
26.	LM 15	21	**	24	22	21	24	23	22	80	22	22	24	28	29	. 21	24.
27,	LM 24	13	26	26	16	18	32	15	26	10	16	28	40	24	41	40	15
28,	LM 170	26	55	23	26	99	52	55	53	52	56	55	48	32	43	55	33
29.	LM 244	54	48	53	22	54	20	54	54	54	55	10	32	54	25	26	22
30	LM 252	23	28	29	23	23	29	24	32	37	23	30	28	44	33	22	32
31.	LM 459	22	57	56	22	22	. 22	58	99	57	22	24	55	ю	21	52	63
32,	PLS 304	45	42	42	45	45	38	4.	40	45	45	43	33	35	24	33	40
33.	PLS 322	36	36	36	35	36	36	33	43	37	32	36	37	52	46	7	35
34.	PS 414/1	46	43	49	46	46	47	17	46	42	46	47	44	36	48	56	39
35,	ML 26	48	53	54	48	48	54	46	22	20	48	53	20	25	38	45	21
36.	LM 35	13	13	15	13	13	13	13	17	12	5	13	10	52	18	25	19
37.	LM 254	63	20	52	54	53	46	53	51	49	54	48	35	51	36	39	52
38.	LM 263	40	45	44	39	39	49	38	44	44	39	46	51	12	40	47	45
39	LW 279	20	24	22	49	49	56	45	29	47	49	52	49	26	49	54	49
40	LM 361	25	37	37	24	25	41	22	37	24	24	35	39	46	20	48	26
7	LM 366	52	46	46	53	52	43	52	48	51	53	45	42	33	42	24	7.8
42.	CO 2	53	30	30	27	23	28	28	34	26	27	29	31	26	34	30	25
43		9	9	9	0	9	9	9	9	9	9	9	**	41	Ŋ	64	14
4		Ξ	6	0	11	11	1	2	89	13	Ξ	6	12	21	10	28	œ
45.		2	6	က	8	2	'n	ю	n	2	21	es	<i>;</i> -	48	6	27	n
46.		ឃុ	2	ជា	រភ	Ð	ιň	τū	2	2	D.	വ	SI.	11	4	80	w
47.		16	14	14	13	16	5	13	12	11	6	16	15	43	11	13	17
48.	LM 167	7	8	Ø	7	7	6	63	6	7	7	7	80	37	12	Ξ	6
49.	LM 218	15	11	Ξ	15	15	0	14	11	7.	13	12	13	89	o	6	10

		-	2	က	4	so I	و	7	8	6	10	Ξ	12	13	14	to.	16
LM 2 22	22	-	+	77	·,-	াল	æ.		: <u></u>	#	÷	75	ેલ	13	411	69	-
LM 3	370	ස	7	7	10	ø	12	Ξ	1	+	10	10	11	53	ın	15	F
LM 449	6	33	20	18	36	34	. 16	39	19	33	36	19	20	13	16	20	29
NA 5		4	15	12	‡	7	Ξ	18	14	13	7	Į	9	3	13	10	28
ML 1		32	19	20	34	32	18	35	21	34	34	20	17	38	14	13	27
LM 159	C	33	31	33	41	40	22	41	36	35	41	25	23	40	28	16	2
LM 152	. 2	49	39	39	51	20	33	49	30	55	51	40	27	45	9	9	4.4
LM 220	0	က	N	N	ო	က	N	N	.01	7	က	N	ന	14	7	-	2
LM 228	8	12	10	9	12	12	· 00	12	10	6	12	00	6	39	15	10	10
LM 275	20	24	17.	17	26	24	17	25	15	21	26	17	16	42	19	32	20
LM 360	0	26	21	21	29	27	1	32	20	23	29	13	13	12	23	4	21
LM 419	6	4	33	32	44	42	23	44	27	33	44	26	26	23	26	29	36
LM 469	0	27	13	19	30	23	21	30	18	30	30	21	21	49	0	38	16
CO 4		4	*	*	4	≠ :	ু ম -	**	₩.	*	* .	40	7	*	52	4	47
Genetic gain		6.07	4.35	6.23	7.53	6.48	9.17	10.62	9.83	7.89	7.53	10.2	8.23	0.23	3.03	1.75	4.23

selected through Smith's model of Discriminant Function by assigning importance only to the character '100 seed weight" among the eleven characters in greengram.

The expected genetic gain in selecting genotypes through Discriminant Function than through straight selection was only 0.23 per cent. Hence the set of assigned weights was not useful in Discriminating the best genotype.

The genotype LM 222 failed to take the first rank, when the weights were assigned as in set-15. This indicated that there was evidence in the data that LM 222 might not be the best genotype when importance was given only to the character "Number of branches" among the characters under study in greengram if selection of genotypes was to be done through Discriminant Function. The expected genetic gain in selecting genotypes through Discriminant Function than through straight selection was 1.75 per cent by assigning weights to plant characters in greengram as in set-15. The genotype LM220 took the first rank and the genotype LM 222 took the third rank when the assigned weights were as in set-15. This indicated that LM 220 was the best genotype and LW 222 was a better genotype.

Equal importance to all the characters was assigned in set-1. The weights in set-2, set-3, set-4 and set-5 were the values estimated from the data. The weights in set-6, set-7, set 8, set-9, set-10, set-11, set-12, set-13, set-14 set-15 and set-16 were the values assigned outside the data. In cases of equal weights (set-1) and the values assigned from the data (set-2 to set-5)

the genotype LM 222 was selected as the best genotype by Smith's model of Discriminant Function. The expected genetic gains in the above six sets of assigned weights ranged from 4.35 per cent to 7,53 per cent. This indicated that assigning equal weights and unequal weights from the data to select genotypes through Discriminant Function has given more or less the same expected genetic gain. In assigning 16 sets of different weights to the eleven characters in greengram the genotype LM 222 has been selected as the best genotype out of 63 genotypes through Discriminant Function in the following 13 sets viz. set-1, set-2, set-3, set-4, set-5, set 6, set-7, set-8 set-9, set set - 11, set - 14 and 16, Therefore in 81 per cent of the cases LM 222 has been selected as the best genotype through Discriminant Function. Even in the sets where LIM 222 did not happen to be the best genotype, it was ranked closer to the first rank (second rank in set-12 and third rank in set-15). Therefore, LM 222 may be considered as the best genotype except when importance is given to the characters "Pods per plant" and "Number of branches" if Smith's model of Discriminant Function is used in selecting genotypes.

REFERENCES

GOULDEN, C. H. 1962. Methods of Statistical Analysis. Indian Second Edn. Asia Publishing House.

PREM NARAIN, V. K., BHATIA and P. k. MAL-HOTRA, 1979. Handbook of Statistical Genetics. ICAR Publications, New Delhi.

SINGH. R. K. and CHOUDHARY, B. D. 1979. Biometic Methods in Operationtic Genetic Analysis. Kalyani Publishers, New Delhi.

*SMITH, H. F. 1936. A Discriminant Function for plant selection. Ann. Eugenies: 7: 240-250.

*Original not consulted