Madras Agric, J. 72 (9): 500-504 September, 1985

BIO-CHEMICAL STUDIES IN CO H. 1 MAIZE SEED DURING STORAGE*

K, KRISHNAVENII and K, R, RAMASAMY

Seeds obtained from the mother crop fertilized with N, P and K at the rate of 200, 100 and 100 kg/ha and packed in 700 gauge thick polyethylene bag recorded lower values for electrical conductivity and leaching of free amino acids and sugars than that obtained from other treatments.

Storability of a seed is largely determined by the history of the seed as well as the temperature and relative humidity that prevail around the stored seed. Seed lots of the same kind, cultivar, chronological age and even germinability do not store equally well under identical condition. Variation in the standard germination and vigour is not only influenced by environmental conditions (Hawthorn et al., 1966), but also by the availability of nutrients to the mother plant during development and maturation of seed (Austin and London, 1966). How far the nutrition to the mother plant influences the storability of resultant seed has not been studied in detail in many crops keeping this in view, two size grades of CO H.1 hybrid seed obtained from the plants supplied with different levels of N. P and K nutrients were stored for 9 months and assessed for biochemical changes.

MATERIALS AND METHODS

Hybrid seed samples retained in 19/64 " (G₁) and 18/64" (G₁) diameter round perforated metal sieves from the bulk seed obtained from plots manured with the following doses of N, P and

K nutrients. (i) No Po Ko (To); (ii) Nico P. K. (T1); (iii) N200 P. K. (T1); (iv) N. P. K. (T.); (v) N. P. K. (T.); (vi) No Po Kso (Ts); (vii) No Po Kiso (To); (viii) $N_{100} P_{50} K_{10} (T_7)$ and (ix) N_{200} P100 K100 (Ta) were treated with a slurry made of 2 grams of thiram (tetramethyl thiuram disulphide) 75 percent WDP and 200 mg of DDT 50 percent WP and 2 ml of water for every kg of seed. The treated seeds were dried to 10 percent seed moisture and stored separately in (1) fresh gada cloth bag of size 20 cm X 15 cm (C,) and (2) 700 gauge thick polyethylene bag of size 12 cm X 10 cm (C1). The cloth bags were hand sewen, while the polyethylene bags were heat sealed.

The packed seeds were kept in storage for 9 months under ambient conditions of temperature and relative humidity. The stored seeds were tested once in three months for the electrical conductivity of the seed leachate (Presley, 1958) and the amounts of free amino acids (Ching and Ching, 1964) and sugars (Somogyi, 1952) present in the seed leachate.

Part of thesis approved by the Tamil Nadu Agricultural University, Coimbatore-3 for the award of M. Sc. (Ag.) degree in Seed Technology

¹ Department of Seed Technology; 2 Dean (Agriculture, Tamil Nadu Agricultural University) Coimbatore-3.

RESULTS AND DISCUSSION

Effect of seed size

Highly significant differences were observed between size grades for the electrical conductivity, free amino acids and sugars (Table 1 to 3). The relatively high electrical conductivity of the leachate of large seed in the present study could be ascribed to the leaching of free amino acids and sugars in greater amounts owing to their high internal concentrations than entirely due to loss of membrane integrity (Paul and Ramasamy, 1979) besides the surface area possessed by them Mullat, 1979). Paul and Ramasamy (1979) reported that the electrical conductivity values, amount of free amino acids and sugars in the leachate increased with increase in seed size in cowpea due to the presence of more reserve food material.

Effect of N, P and K nutrients

The N, P and K treatment showed significant effect for the electrical conductivity, leaching of free amino acids and sugars. The higher the nutrients stored in the seed, the greater the vigour of the seedling and its potential for survival (Pollock and Roos. 1972).

In the present study, seeds obtained from crop fertilised with N₃₄₆P₁₀₉K₁₀₉ during storage recorded lower values for electrical conductivity and leaching of free amino acids and sugars in respect to their leachate compared with those from plants that received other

fertilizer treatments. The minimum leaching of ions from seeds fertilised at 200. 100 and 100 kg of N, P and K/ha might be due to inhibition in the formation of endogenous free radicals and antioxidant property of phosphorus and thus protecting the cell membrane from free radical damage (Basu, 1976).

Effect of storage container

The electrical conductivity of the seed leachate and leaching of free amino acids and sugars determined periodically had revealed the superiority of moisture-vapour proof container for storing of the seed. The relatively higher values recorded by the seed stored in cloth bag than in polyethylene bag could be related to the higher obsorption of moisture by the seeds stored in cloth bag (Vanangamudi and Ramasamy, 1984) in bajra.

Effect of storage period

In general, the electrical conductivity and the leaching of free amino acids and sugars significantly increassed with the increasing periods of storage, which may be due to the membrane aberrations increasing with increasing age of seed (Berjak and villiers, 1972). waning of seed is associated with vigour in weakening of cell membranes and this leads to the leaching of sugars, free amino acids and electrolytes along with other water soluble cell contents through their membranes into the seed steep water (Heydecker, 1972).

The author thanks to Dr. K. Vanangamudi, Assistant professor of Seed Technology for his help during the course of this study.

Table 1 Electrical conductivity (micromhos/cm) in CO H. 1 maize hybrid seed leachate as influenced by size grades, N, P and K nutrients, containers and periods of storage

		C ₁			•;	C ₂			
	P ₀	Pı	P ₂	P ₅	P ₀	P ₁	P ₂	P	
				*			27	100	
G ₁ T ₀	66	190	195	328	66	50	231	251	
T_1	22	174	212	274	22	60	132	268	
To	11	196	185	273	.11	55	160	285	
To	39	152	196	285	39	71	248	268	
T.	17	196	196	317	17	44	160	251	
T_{z}	48	180	180	295	48	55	186	230	
T_{ϵ}	28	140	262	285	.28	55	143	275	
Υ,	50	175	191	296	50	72	193	279	
Te	17	158	190	278	- 17	44.	160	241	
3 ₂ T _o	33	174	179	253	33	.44	165	202	
τ_1	6	124	158	251	6	33	104	209	
Te	10	159	185	. 241	10	28 .	110	191	
Ta	17	161	190	262	17	33	110	197	
74	11	158	168	209	11 .	33	105	196	
76	42	135	146	229	42	44	149	208	
76	-22	124	163	241	22	33	182	219	
7,	33	163	168	229	33	44	138	208	
Ta	10	102	135	228	10	55	127	208	
		Comp	arison be	tween signific	ant factors	-			
,	Grades	Tre	atments	Containers	periods	GT.	GC		
D (P=0.0			90**	7.93**	7.93**	16.83**			
	GP -	т	C	TP		СР			
	31.83			NS		31.83**	*-		

Table 2 Leaching of free amino acids (ug) in CO H. 1 maize hybrid-seed as influenced by size grades, N, P and K nutrients containers and periods of storage

	٠,	C ₁			C ₂				
+;	Po	P ₁	P _s	P ₄	Po	Ps	P _s	P _B	Mean
To	19	38	57	75	19	32	32	75	40
7,	22	32	38	75	22	28	28	63	35
T ₂	7	13	25	75	7	13	38	56	29
$\tau_{\scriptscriptstyle B}$	13	13	25	63	13	25	40	56	34
T4	10	25	38	63	10	19	40	63	33
Ts	7	38	57	63	7	13	25	63	27
T ₆	16	25	32	75	16	32	44	63	39
7,	13	25	63	88	13	25	32	50	30
	7	32	38	50	7 -	13	34	38	23
Τc	16	19	38	63	16	32	25	50	34
Τ,	10	25	32	50	10	19	28	50	31
T:	. 4	13	25	50	4	, ⁷ 7	25	50	.22
Ts	4	25	25	38	4	7	25	38	19
T4	7 .	7	13	50	7	13	15	50	22
Ts	- 4	25	32	57	4	7	15	38	16
T ₆	13	25	32	57	13	25	28	38	26
τ,	31	13	19	57	11	19	15	25	18
Tá	4	7	13	50	- 4	7	25	28	16

		27 12 11 14 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1					
	Grades	Treatment	Container	Period	GT	GC	GP
(CD P=0.25)	1.93**	4.10**	1.93**	2.73**	NS	NS	3,87**
10. K	TC ,	TP	CP				
CD (P=0.05)	5.88**	NS	3.87**	7			

Fable 3. Leaching of sugars (µg) in CO. H. 1 maize hybrid seed as influenced by size grades, N, P and K nutrients, containers and periods of storage

			C1				C ₃		
_		Pδ	Pı	Р2	Pa	Po	P ₁	Pz	Pa
3,	T.	94	98	2025	1875	94	209	724	823
	T ₁	87	89	940	1900	87	91	583	676
	T ₂	79	98	192	1600	79	138	450	657
	T_{a}	83	105	280	1375	83	95	417	769
	T.	49	88	270	1375	49	90	417	544
	T ₆	57	163	1013	1363	57	79	335	622
	To	79	230	297	1625	79	83	572	625
	Τç	120	183	656	1625	120	160	551	905
	To To Te	57	79	148	1500	57	76	309	309
G ₂	To	57	68	153	775	- 57	78	395	674
	Tr	49	83	235	900	49	90	375	402
	T ₂ T ₃	57	87	153	731	57	87	219	430
	Ta	75	87	153	775	75	87	182	484
	Τ,	42	68	240	900	42	83	351	352
	T_5	83	120	230	1013	83	153	225	428
	T ₅ T ₆	54	142	153	900	54	66	245	358
	T ₂	64	83	220	550	64	113	222	290
	Ta	49	53	102	675	49	68	250	269

Comparison between si	anificant factors
-----------------------	-------------------

CD (P=0.05)	Grades 39.56**	Treatments 83 92**	Containe 39.56*			*-
CD (P=0.05)	GT	GC	GP	TC	TP	CP
	NS	55.95**	79.12**	118.69**	NS	79.12**

REFERENCES

AUSTIN, R. B. and P. C. LONGDEN. 1969. The effects of manurial treatment on the yield and quality carrot seed. J. Hort. Sci., 41: 361-70.

3ASU, R. N. 1976. Physio-chemical control of seed deterioration. Seed Res., 4: 15-23.

3ERJAK, P. and T. A. VILLIERS. 1972. Ageing in plant embryos, II. Age - induced damage and its repair during early germination. New phytol., 71: 135-144.

CHING, T. M. and K. K. CHING. 1964. Freeze drying pine pollen. Pl. Physiol., 39: 705-709.

AWTHORN, L. R., L. B. KERR, and W. F. CAMPBELL, 1966, Relation between temperature of developing pods and seeds and scalded seeds in garden peas, *Proc. Amer. Soc. Hort. Sci., 88*: 437.

IEYDECKER, W. 1972. Vigour, In: Viability of seeds (Ed.) E. H. Roberts. PP. 209-252. Chapman and Hall, London.

MULLAT. H. J. 1979. The relationship between seed size, total seed electrolytes, electron lytes leakage and embryo growth of *Phseo-lus Vulgaris*, *Aust. Seed Sci. News letter*, 5:605-64.

PAUL S. R. and K. R. RAMASAMY. 1979
Relationship between seed size and seed quality attributes in cowpea, Seed Res. 7:63-70.

POLLOCK, B. M. and E. E. ROOS. 1972. Seed and Seedling vigour. PP. 313-387. In: Seed Biology - I (Ed. OT. T. Kozlowski), Academic Press, New York.

PRESLEY, J. T. 1958 Relation of protoplast permeability to cotton seed viability and pre-disposition to seedling disease, PL. Dis Reptr., 42: 852.

SOMOGYI. M. 1952. Note on Sugar determination, J. Bio Chem., 195: 19-23.

VANANGAMUDI, K. and K. R. RAMASAMY 1984. Bio-Chemical studies in K. M. 2 bajra seed during storage. Madras agric, J.