Madras Agric. J. 72, (4) 181-184 April 1985.

AND UPTAKE OF NPK IN COWPEA VAR. CO. 3

R. KRISHNASAMYI, T. S. MANICKAMI and G. V. KOTHANDARAMANI

Application of ZnSO, (25 kg/ha) had influenced the highest uptake of N, P and K in cowpea and soil application of 50 kg P₂O₂/ha was found to be significantly superior in increasing their uptake. The grain yield was the highest in T₂ treatment (Na₂MoO₄ at 0.25 kg/ha) while straw yield was higher in T₄ treatment (ZnSO₄ at 25 kg/ha). Highest grain yield (602 kg/ha) of cowpea was recorded in T₅ treatment when coupled with 20/₂ DAP spray.

Yield of pulse crop had not been increased considerably over the last two decades. Research work done so far had given indication that pulses respond to the application of phosphorus (Deshpande and Bathkal, 1965). Foliar spray of phosphate solution (DAP) has been found comparable to soil application (Gill et al., 1971). But information is laking on the interaction of P with micronutrients on the yield of pulse crops.

MATERIALS AND METHODS

A field experiment was conducted with cowpea var. CO 3 as test crop using various micronutrients viz., Na,Mo O. (0.25 kg/ha.), CuSO. (12.5 kg/ha), ZnSO. (25 kg/ha), MnSO. (25 kg/ha) and FeSO. (25 kg/ha) as treatments at the Tamil Nadu Agricultural University Farm. The experimental field was of deficient in available P (9.5 kg PsO./ha), and sufficient in available N (207 kg/ha) and available K (340 kg/ha). As per the critical level fixed for Zn, Cu, Fe and Mn by Savithri (1978), the soil was deficient in DTPA extractable Zn,

Cu and sufficient in Fe and Mn. Fifty kgP+O+/ha was applied through soil and two per cent solution of DAP was used as foliar spray at flowering stage. The yield was recorded. Grain sample and plant samples were collected at the time of harvest for chemical analysis. The experiment was laid out in a spilt plot design with three replications. The plant samples were analysed for NPK by following the methods as detailed by Jackson (1973). Concentrations of Zinc, Copper, Manganese and Iron were estimated in the di acid extract of plant samples using Varian AA 120 atomic absorption spectrophotometer. The data were subjected to statistical analysis (Snedecor and Cochran, 1967).

RESULTS AND DISCUSSION

The total uptake of N, P, K in cowpea showed (Table 1) that both 2%, DAP spray and 50 kg P±O₃/ha application had increased the uptake of N, P and K compared to water spray. Although, the uptake were higher in 50 kg P±O₃/ha, the increase in uptake was

¹⁻³ Department of Soil Science and Agri, Chemistry, Famil Nadu Agricultural University, Colmbatore-3.

slightly higher than 2% DAP strayed plots. Substantial increase in the total uptake of NPK was observed when micronutrients were applied. found that all the treatments had significantly increased the NPK uptake Among the treatments, application of ZnSO, (T,) at 25 kg/ha recorded the highest uptake in respect of all the three major nutrients followed by T, (CuSO:-12.5 kg/ha), Tr (Na, MoO: 0.25 kg/ha), T. (MnSO. 25 kg/ha) and Te (FeSO,-25 kg/ha). In the case of P uptake T₁ (ZnSO₁) treatment has exceeded other treatments in increasing the uptake of P by cowpea. treatment was sharply followed by T. (Na₁MoO₁), T₁, T₂ and T₃ in the decreasing order. Potassium uptake by cowpea also followed a similar pattern in that again the treatment T. (ZnSO.) had influenced the highest uptake of K. These results clearly indicated that ZnSO₁ application had a greater impact in increasing the uptake of NPK sharply followed by Ts and Ts treatments. This may be due to the variation in dry matter production and concentration of N, P and K in haulm and grain. This is in agreement with Hulagur et al., (1975) who stated that NPK uptake increased by Zn application. Among the methods of phosphate application, soil application (50 kg P:Os/ha) was found to be significantly superior in increasing the uptake of NPK.

When the yield of cowpea grains and haulm were statistically analysed (Table 2), it was observed that both micronutrient treatments and methods of P application had significant effects in increasing the yield. Contrary to the observation made in the nutrient uptake, the mean grain yield was the highest (513 kg/ha) in plots which recei-

ved T, treatment (Na,MoO₄) and when 2% DAP spray was done, the yield was highest (602 kg/ha) against the control yield of 408 kg/ha. The treatment T₄ (ZnSO₄) had emerged as the next best which was on par with the treatments T₄ and T₄. Application of MnSO₄ was not in any way superior to control plot-However, the yield of haulm had a different pattern, in which ZnSO₄ treatment had the highest mean haulm yield (3028 kg/ha). The MnSO₄ treatment which effected the lowest grain yield had produced a higher haulm yield (2736 kg/ha).

The total uptake of major nutrients was found to be highest in ZnSO, (T₄) treated plots. But it is interesting to note that the higher uptake had been exhibited in the form of haulm yield and not in the grain yield. However, highest grain yield was obtained only in T, treatment (Na₁MoO₂) plots, which recorded the NPK uptake slightly 'lower than that of T. treatment. This suggested that the nutrients (NPK) available in the Ti treated plots were higher and the larger uptake would have been diverted to vegetative production rather than grain formation. However, in the case of T, treatment, though the amounts of NPK uptake were only slightly lesser, the grain production was found to be higher than vegetative production This is possibly due to some enzymes which required Mo ions for their activity. The enzyme nitrate reductase catalyses reduction of nitrate: Molybdenum is the prosthetic group of this enzyme. In T. treatment (Na.MoO,), the grain yield was higher than To treatment eventhough the reverse was true in respect of the uptake of NPK. This might be due to the effective utilization of nitrogen.

Table 1: Total uptake of N, P and K (Kg/ha) (Mean value of three replications)

Methods of application		50 kg P ₁ 0,/ha	, ha	20	2% DAP spray	гау	À	Water spray			Mean	
Nutrients Treatments	z	۵.	×	z	a.	¥	z	۵	¥	Z	٩	¥
Control	43.41	13.11	41 09	39.00	12.71	39.18	30.57	9.64	33.07	37.66	11.18	37.77
Na, MoO. (0.25 kg/ha)	60.42	2181	55.42	53,35	19.96	51.60	45,13	17.16	45.90	52,96	19.60	50 97
CuSO, (12.5 kg/ha)	54.95	21.70	54.12	58.38	18.01	52 54	46.06	15 53	50.72	53.13	18.40	52 46
ZnSO ₄ (0.5 kg/ha)	57.07	21.97	55 37	53.74	19,18	56 09	50.52	21.84	2 6 09	53.78	21.00	55.85
MnSO. (25 kg/ha)	52.84	18,65	44.52	46 33	18.20	50.19	54.09	15.76	53,12	51.08	17.60	49.28
FeSO. (25 kg/ha)	51.90	19.27	55,00	46.38	16.60	42,59	43.41	15.43	46.64	47.23	17.10	48 08
Mean	53.44	19.40	50,92	49.50	17.50	48.70	44.97	15 90	47.09	\$		
		2				z			<u>a</u>		~	
					S.E		CD at 5%	1	S.E. C	CD at 5%	SE	G.D at 54,
	Method	Treatments Methods of application	freatments application Methods		0.28		0.79	ű	0.5	1.4 1.0 N.S	2.26	6,49
	reame	N	270				2	0		Z	'n	

Table : 2. Yield of cowpea grain and Haulm (kg/ha) (Mean of three replications)

Methods of P	50 kg P.O./ha		2%, DAP spray		Water spray		Mean	
application Treatment	Grain	Straw	Grain	Strow	Grain	Straw	Grain	Straw
Control	438	2200	365	2116	341	1525	378	1947
Na, MoO, (0.25 kg/ ha)	530	2913	502	2894	408	2138	513	2648
CuSo, (12.5 kg/ha)	480	2810	380	2919	441	2291	434	2673
ZnSo, (25 kg/ha)	494	3096	483	2994	383	2994	453	3028
MnSo ₄ (25 kg/ha)	441	2777	385	2771	358	2732	394	2736
ZnSO ₄ (25 kg/ha)	491	2705	424	2305	399	2483	438	2497
Mean	479	2750	438	2656	358	2359		
			Grain	1		На	ulm	4.1
,		S. E.	-	CD at 5%	s	. E.	CD; at	5%
Treatments		19,0) ; ;	54	12	1	349	

Methods of P application -13.0 41 86 246

From the results, it could be concluded that among the treatments, ZnSO₄ (T₂) application had influenced the highest uptake of N, P and K in cowpea and soil application of 50 kg P₂O₃/ha was found to be significantly superior in increasing their uptake. The grain yield was the highest in T, treatment (Na₁McO₁) while the straw yield was higher in T, treatment (ZnSO,). Highest grain yield (602 of kg/ha) cowpea was recorded in To when coupled with 2% DAP spray.

REFERENCES

DESHPANDE, A. M. and B.G. BATHKAL, 1965. Effect of phosphorus on mung (P. aureus Roxb.) Indian J. Agron. 10: 271-278.

GILL, A. S., R. K. PANDEY, MUKHTAN SINGH and C. T. ABICHANDANI, 1971. Effect o,

soil and foliar application of phosphorus on seed yields of cowpeas (Vigna sinensis). Indian J. Agron, 16: 303-4.

JACKSON, M.L. 1973. Soil chemical analysis Prentice Hall India (P) Ltd., New Delhi.

HULAGUR, B. F., R. T. DANGARWALA and B. V. MEHTA, 1975. Effect of zinc coppe and phosphorus on the yield and composition of hybrid maize grown in loamy sand, J. Indian Soc. Soil Sci. 23: 231-235

SAVITHRI, P. 1978. Studies on the effect of micronutrient fertilization on the availability of nutrients in soils and their uptake in a cropping system Ph. D. Thesis, T.N.A.U. Coimbatore

SNEDECOR, G.W. and W.C. COCHRAN, 1967 Statistical methods. 6th Edn. Oxford and IBH Pub. Co., Press, Calcutta.