Medias Agric J. 72 (3) 121-125 Merch, 1985

INFLUENCE OF SEASON AND N, P AND K NUTRIENTS ON THE GROWTH AND FLOWERING OF MS 51 41 A AND THE YIELD OF KM 2 BAJRA HYBRID SEED*

K. VANANGAMUDI* and K. R. RAMASWAMY*

Field experiment conducted during summer and winter seasons of 1979, revealed that (i) application of N significantly influenced the period of flowering, plant height and number of productive tillers; (ii) application of P resulted in significant differences in the flowering period and number of productive tillers; (iii) K application increased the plant height and number of productive tillers in the winter season only; (iv) the optimum doses of N, P and k for obtaining maximum yield of quality seed was 100, 50 and 50 kg/ha, respectively and (v) the yield of seed was higher from the winter than from the summer crop.

Seed yield is complex character and influenced by a number of both external and internal factors. Among the external factors, availability of nutrients play a major role (Agrawal, 1980). Though considerable work has been carried out with commercial crop, information on the effects of nutrients on a seed crop of bajra is very meagre. Therefore, it becomes imperative to undertake studies on this aspect and make available the information thus obtained to the seed growers as quickly as possible.

MATERIALS AND METHODS

Field trials were laid out adopting split-plot design, replicated three times, during summer and winter seasons of 1979. Application of N (0, 100 and 200 kg/ha) and P (0, 50

and 100 kg/ha) was taken as the main-plot treatments and of K (0, 50 and 100 kg/ha as the sub plot treatment. The planting ratio adopted was 5:1 (5 lines of the female, MS 51 41 A:1line of the male, K 560 D 230). The experimental area was surrounded by four rows of male line as border rows. The seeds were dibbled adopting a spacing of 45 cm x 15 cm. The crop was thinned to maintain one plant per hill between 18 and 20 days after sowing. The recommended (ultural plant protection measures were followed. In each treatment and replication, the observation on the number of days taken for 50 per cent flowering was recorded. At maturity, the plant height and the number of productive tillers per plant was counted in five plants. Ear heads from each plot were har-

^{*} Part of ph. D. thesis approved by TNAU

^{1.} Assistant professor of Seed Technology,

^{2.} Dean (Agri.), TNAU, Colmbatore - 3.

vested, dried and threshed separately. After cleaning, the seeds were dried to uniform moisture content of 10 to 11 per cent and weighed. The hybrid seed yield recorded from the individual plots were computed and expressed as kg/ha.

RESULTS AND DISCUSSION

The number of days to 50 per cent flowering has been significantly influenced by the application of N, P and K. Aswathaiah (1977) arrived at similar conclusions in the parental lines of x 4 hybrid bajra. The flowering was earlier by 1.3 and 1.7 days in summer and 2.3 and 3.7 days in winter in N₁ and N₂, respectively

than in No (Table 1). The significant interaction between N and P in winter and between N and K in summer season would indicate that availability of N was more important than P or K. Krishnasamy and Ramaswamy (1979) reported significant response to the interaction of NK in the parents of CSH 5 hybrid sorghum. Delayed in flowering in winter and early flowering in summer is in conformity with the results reported by Aswathaiah (1977).

Application of N in both the season and of P and K in winter season alone had significantly influenced the plant height (Table 2). Active absor-

Table 1. Influence of N, P and K nutrients on days to 50 per cent flowering in summer and winter seasons in MS, 5141 A.

	K ₀				K1			K2 -			P1	P2	
	P ₀	P1	P2	P ₀	Р1	P2	Po	P1	P2	: :::::::::::::::::::::::::::::::::		25 -	
				•		Sumn	ner					,	
No	57	55	54	56	53	52	56	52	54	56	53	53	
N1	56	53	52	55	52	52	55	51	52	55	52	52	
N2	56	51	51	55	51	51	56	52	52	55	51	51	
4.						Wint	er .			,			
No	60	57	55	58	56	56	58	56	56	59	56	56	
N1	58	54	53	53	52	52	57	53	52	58	53	53	
N2	55	52	52	55	52	52	55	52	52	55	52	52	

CD	(P=0)	.05)				. 5	Summer	V	/inter
	N	†					0.4		0.4
	Р						0.4		0.4
-	K '						0,3	5	NS
	NxP						NS		0,5
	NxK	Comparison	o!	N	in	K	0.4		NS
		Compasison	of	ĸ	in	N	0.6		NS
	PxK	Comparison	of	P	in	K	0 4		NS
		Comparison	of	K	in	P	0.6		NS

ption and metabolism of nitrogen resulted in increase in height of rice plant (Tanaka and Navasero, 1964). Increased plant height recorded in summer is in agreement with the findings of Aswathaiah (1977).

The number of productive tillers per plant varied significantly due to the levels of N and P in both the seasons and of K in winter season alone (Table 3) Similar results have been reported by Aswathaiah (1977). N at 200 kg/ha recorded the highest number of productive tillers. Nitrogen application promotes synthetic activity causing increase in tillering (Osada

and Murata, 1962). The formation of more number of tillers in winter than in summer may be due to the formation of more scondary tillers during that season (Godbole, 1926).

The hybrid seed yield differences were significant for N and P in both the seasons (Table 4). According to Harrington (1960), a positive and significant correlation was observed between the yield and the levels of nitrogen applied. The high seed yield in N2 treatment might be due to the formation of more number of productive tillers per plant. The increase in hybrid seed yield was significant

Table 2. Influence of N, P and K nutrients on height of plant in summer and winter seasons in MS, 51 41 A.

i -	the state of the s											
4		Kı	0		К1			1 1		P0 - P	P1	P2
	PO	P1	P2	Po ·	P1	P2	Po	P1	P2			
	- /a-	4.7	.,	T.		Summer	-					
No	100.7	94:4	94.8	104.0	100.1	97.2	96.9	94.6	104.6	100.5	96.4	98.9
N1	104.6	1137	108.9	101.4	110.8	110.0	105.6	114.4	112.2	103.9	113.0	110.4
N2	116.7	1140	112.7	108.0	109.5	112.8	112.4	110.8	108.9	112.4	111.4	111.5
						winter		b			-	
No	81.1	91.1	93.1	86.8	92.0	89.5	87.9	92.5	89.0	85.5	91.8	90.5
N1	88.4	97.5	99.9	91.0	102.3	99.4	91.7	103.9	102.3	90.4	101.3	100.6
N2	90.3	101.3	103:3	88.5	102.4	104.1	0.88	102.0	101.7	88.9	101.9	103.0
					- 1			-	**			
	CD (P=0.05))		Summ	ner	Winte	er				
	- 1	N			6.76	**	3.58*	•				
					NS		3,58*					
	ŀ	¢ '			NS		0.64*	•				
	3	N X P			· NS		NS					
	ì	XXK Co	mparison	of N in I	3.07	*	1,12*	*				
		Co	mparison	of K in.N	7.22		3.69*	•				
)	XK Co	mparison	of Pin I	NS	÷	1.12*	*				
		Cò	mparison	of K in	P NS	:	3.69	•				

upto 100 kg/ha only. Deosthale et al. (1972) reported that increase in the quantity of N beyond the optimum level decreased the yield considera-

bly. In the present study, the response to N application was comparartively more in winter than in summer.

Table 3. Influence of N, P and K nutrients on the number of productive tillers per plant in Summer and winter seasons in MS. 51 41 A.

	κo				K1			K2 -			P1	P2
	۲0	P1	F 2	PO	P1	P2	PO	PI	P2	·		
				2#	-	Sum	mer	,	1		4	14,85
No	3.4	3.6	3,7	3,5	3.8	3,8	3.7	3.4	3.7	3.5	3.6	3.7
N1	3.7	4.9	5.0	3,8	5.3	5,3	4.3	5.3	5.3	3.9	5.2	5.2
N2	Б,2	5.1	5.3	4.8-	5.1	6.4	4.7	5.1	5.4	4,9	5.1	5.7
à						Win	ter					T.
No	5.2	4,6	4.3	4.9	5.3	4.5	4.7	5.2	4.5	4.9	5.0	4.4
N1	5.6	9,1	8.2	5.5	7,6	8.5	7,0	9.1	9,5	6.0	8.6	8.7
N2	5.6 *	8.7	8.5	69	8.8	8.7	6.7	9.1	9.3	6.4	8.9	8.8

CD (P=0.05)	Summer	Winter
N.	0,5**	0.6**
P	0.5*	0.6**
к '	NS	0.5*
N×P	NS	1.1*
NxK Comparison of N in K	NS	- NS
Comparison of K in N	NS	NS
PxK Comparison of P in K	NS	NS
Comparison of K in P	NS	NS

Table 42 Influence of N. P and K nutrients on hybrid seed yield in summer and winter seasons

1000	Ko .			K1			2	4	Po	P1	P2
P0	P1	P2 '	Р0	P1	P2	Po	P1	P2			
-					ummer						
No 1582	1770	1010	1424		100 miles	1040	-1522	1705		4542	***
		1918	.1424			1646	1528	1795	1551	1543	1944
N1 .930	2817	2576	1182	2585	2037	1261	2886	2209	1125	2762	2274
N2 1518	2397	2453	- 1962	2150	2461	1745	2590	2071	1742	2379	2328
					Winter						
No 1804	1948	2165	1691	1695	2190	1660	1822	1973	17.19	1822	2109
N1 1465	2684	2583	1693	2527	2214	1737	2804	2323	1632	2672	2373
N2 1855	2512	2512	2072	2303	2502	1948	2594	2229	-1958	2471	2415
CD (I	P=0.05)	-		Summ	er ·	Winter					
1	1			372*		48**					
Î				372*		48**					
1				NS	T 54	NS					
	xP.			NS.		83**					
	KK Comp	árison of	N in K	ks	- ,!	NS					
-		arison of		· NS	400	NS					
	x K Comp	rison of	P in K	NS	2 - 2	NS					
-	7.1 a 2.1 a 2.1 a 2.1 a 2.1 b	arison of		NS	*-	NS					

REFERENCES:

28. 3 Fe

- AGRAWAL, R. L. 1980. Seed Technology. Oxford and IBH Publishing Co., New Delhi-4-35
- ASWATHIAH, B. 1977. Influence of season, plant density and fertilizer doses on the yield and quality of hybrid bajra (P. typhoides S & H). M Sc. (Ag.) Thesis, Tamil Nadu Agricultural University. .

- DEOSTHALE, Y. G., K. VISWESWAR RAO and K. C. PANT. 1972. Influence of the levels of N fertilizer on the yield, protein and amino acids of pearl millet (Pennisetum typhoides (Burn. f) Staphf&C.E. Hubb Indian J. agric. Sci., 42: 872-876.
- GODBOLE, S. V. 1926 Seasonal inflevence on the water requirement and growth of bajra (P. typhoideum). Proc. 13th Indian Sci. Co-nfr. pp. 211.

- HARRINGTON, J. F. 1960. Germination of seeds from crtrot, lettuce and papper plants grown under servere nutrient deficiencies Hilgardia, 30: 219-235.
- KRISHNASAWAMY, V. and K.R. RAMASWAMY. 1979. Studies on hybrid sorghum seed .. production-Application of NPK at different levels and combination on the yield and quality of CSH-5 hybrid seed. Madras agric. J. 66: 6-13.
- OSADA, A. and Y. MURATA. 1962: Studies on the relationship between photosynthesis and varietal adaptability for heavy manuring in rice plant, Proc. Crop Sci. Soc. Jap., 30: 220-223:
- TANAKA, A. and S. A. NAVASERO, 1964. Loss of nitrogen from the rice plat through rain or dew. Soll and plant Nutr. 10 ; 36.