Madras agric. J. 69 (3): 189 - 170, March 1982

Influence of Magnesium Application in Combination with Potassium and lime on the yield of ragi (Eleusine Coracana Gaertn.) In Acid soils

K. K. MATHAN! AND K. CHIRANJIVI RAOP

A pot culture study with sixteen treatments (combination of two levels of lime, two levels of K₂O and four levels of magnesium) was conducted with CO 7 regi (Eleusthe Coracana Gaertn.) as the test crop. The results indicated that application of magnesium at the rate 50 kg Mg/ha was the optimum in increasing the yield. Ragi yield was increased by 15.14 per cent. However quadratic in both the soils liming depressed the yield Under high calcium content in the soil, lower availability of magnesium and phosphorus was observed.

Potassium did not influence the ragi yield. Top/root ratio indicated that root was affected more intensely by magnesium than the tops. Soil variations in their response to application of magnesium, lime and potassium were significant. Titukkal soil was better than Doddabetta soil.

Literature on magnesium deficiency invariably emphasised the need to study this problem in conjunction with calcium and potassium. (Berry and Ulrich. 1970; Hossner and Doll, 1970 and Bolton, 1972). Magnesium deficiency symptoms in the farms of Nilgiri soils were recorded by Mathan et al. (1973). The soils of this area were distinctly acidic, the pH values ranging from 3 7 to 6 8. In the present investigation, therefore, Titukkal and Doddabetta soils which were rated as deficient in exchangeable Mg ((less than 2.3) me/100 g soil) were taken up for a pot culture study, to assess whether there is any response to application of magnesium fertilizers.

MATERIAL AND METHODS

Two soils having the exchangeable magnesium content below the critical limit (i.e. 2.3 me/100 g soil) were selected. The soil from Titukkal (2210 M3L) in Obtacamund was clay in texture. The organic matter content was 7.4 per cent. The exchangeable magnesium content was very low (0.99 me/100 g). The second soil collected from Doddabetta peak (26.37 meters M3L) was clay in texture and contained low amounts of exchangeable magnesium (1.11 me/100 g). But it contained higher amount of organic matter (29.5 per cent).

¹ Assoc. Professor, Dapartment of Soil Science and Agril. Chemistry, Tamil Nadu Agril. University, Colmbatore-641 003, India.

^{2.} Agri, Chemist, Sugarcane Breading Institute, Colmbatore, India.

The following sixteen treatments involving different combinations of lime, potassium and magnesium were tried.

The treatments were replicated 5 times and were as follows:

1. L, K, Mg, .
2. L, K, Mg, .
3. L, K, Mg, .
4. L, K, Mg, .
5. L, K, Mg, .
6. L, K, Mg, .
7. L, K, Mg, .
8. L, K, Mg, .

9. L. K. Mg.
10. L. K. Mg.
11. L. K. Mg.
12. L. K. Mg.
13. L. K. Mg.
14. L. K. Mg.
15. L. K. Mg.

Lo...No lime
L1...Liming at 16.8 1/ha
Ko...No potassium

K,...Potassium applied in the form of potassium sulphate at the rate of 100 kg K,O/ha Mg...No Inaymosium
Mg....50 Kg Mg/ha as MgSO..7H, O
Mg....100 kg Mg/ha as MgSO..7H, O
Mg....150 kg Mg/ha as MgSO..7H, O

Constant doses of nitrogen (40 kg N/ha) and phosphorus (20 kg P₂O₄/ha) were applied in the form of ammonium sulphate and diammonium phosphate respectively. The quantity of nitrogen supplied by diammonium phosphate was taken into account while calculating the quantity of N to be applied as ammonium sulphate.

The design of the experiment was split-plot with L and K combination as the main plot treatments. Ragi (Eleusine coracana Gaertn.) is one of the widely grown cereals in the Nilgiris and therefore selected as the test crop for the pot trial. The crop was harvested at maturity. The yield of grains, straw and roots were recorded on oven dry basis. Post-harvest soil samples were also collected.

Pre-planting and post-harvest soil samples were analysed for exchangeable cations (K, Ca and Mg), available nitrogen, available phesphorus and soil reaction (Jackson 1973). The various parameters were subjected to analysis of variance to find out the effect of various treatments on them as per the procedure suggested by Snedecor and Cochran (1967). Simple correlation, regression equations and second order equations were worked out)

RESULTS AND DISCUSSION

Magnesium fertilization had increased root, shoot and grain yield of ragi significantly in Titukkal soil (Table 1 to 4). In the case of root yield, increase was observed up to Mg₃ level, while in the case of shoot and grain yield, the highest yield was recorded at Mg₁ level (50 kg Mg/ha). In both the cases the relationship between magnesium application and the root yield was quadratic in nature (Fig. 1). Magnesium application to Doddabetta soil increased

March 1982]

the root yield up to Mg₃ level (150 kg Mg/ha). Grain yield up to Mg₂ level (100 kg Mg/ha) was found to be significant. The grain yield trend was similar to those in Titukkal soil resulting in a quadratic relationship (Fig.2) Response to applied magnesium in magnesium deficient-acid soils was in consonance with the observations recorded by Sawyer and Dallyn (1966) and Draycott and Durrent (1970).

Potassium fertilization did not increase the yield of shoot, grain and total dry matter yield in both the soils. But there was a significant LxK interaction in Titukkal soil, indicating that potassium fertilization in the absence of time increased the yield of roots-Similar results were recorded by Fine and Shannon (1976). However York, et al. (1954) stated that application of potassium to the unlimed soil proved futile and in some cases even yields reduced slightly. There was a significant Mg×K interaction in increasing the yield in Doddabetta soil Mg. x K1 combination registered the highest yield. Similar results were obtained by Page and Bingham (1965) and McIntosh etal. (1973) to mention a few. In the present study exchangeable Mg correlated positively with available K of the soil (r=0 350**, n=16.)

In both the soils-liming decreased the yield of grains substantially Depression in yield was observed by several earlier workers also In the present study exchangeable Ca content of the post-harvest soil sample was observed to be negatively correlated with exchangeable Mg (r=-0 670°) n=16). Chucka (1934)

observed similar results due to antagonistic effect on available magnesium-

Further, exchangeable Ca was found to be negatively correlated with available P content of soil (r=-0 422**;n=32). Lanyon et al. (1977) suggested that depressed yield due to liming in excess might be due to its adverse effect on P availability. As indicated earlier potassium effect on yield was significant only in the presence of lime or magnet sium. (Dorofaelf and McNaught 1962 and Lee and MacDonald 1977). It was evident from the above observations that excessive release of exchangeable Ca into solution retarded the availability of P and Mg and reduced the uptake of P, Mg and K. This might be the probable reason for the depressed yield and the results of Hossner and Doll (1970) and Bolton (1977) are in agreement with the present findings

Pooled analysis of the total dry matter yield from the two soil types (Table-5) revealed that liming to neutral or near neutral pH as per lime requirement determination resulted in depressed yield. Christenson et al. (1973) reported that liming did not influence oats yields. It is imperative, therefore, that whiel liming the exchangeble Ca status of the soil, the pH rise desired, magnesium status of the soil should also be taken into account. Pooled analysis further revealed that magnesium fertilization increased the total dry matter yield in a quadratic fashion, the highest yield being obtained from magnesium fertilization at the rate of 50 kg Mg/ha.

Although the growth of both roots and tops were influenced by magnesium

fertilization, roots were affected more intensively than the tops. This was supported by decrease in top/root ratio (Table 6) from 3.27 to 2.30 in Titukkal soil and from 4.62 to 3.16 in Doddabetta soil. This was in line with the results of Clark (1975).

REFERENCE

- BERRY, W. L. and A. ULRICHE. 1970. Calcium Juntition of sugar baets as affected by potassium. Soil Sci. 110: 339-94.
- BOLTON, J. 1072. Changes in magnesium and calcium in soils of the Broadbalk wheat experiment at Rothamsted from 1965 to 1966. J. agric. Sci. Camb. 79: 217-23.
- BOLTON, J. 1977. Changes in soil pH and explanate coloium in two liming experiments on contrasting soils over 12 years J. agric. Soi. Camb. 83: 81-86.
- CHRISTENSON, D. R., R. P. WHITE and
 E. C. DOLL, 1973. Yield and magnesium
 uptake by plants as affected by soil pH
 and calcium level. Agron. J. 65: 205-03.
- CHUCKA, J. A 1974 Magnesium deficiency in Arcestook potato soils. Amer. Potato J., 11: 29-34
- CLARX, R. B. 1975. Differential magnasium efficiency in corn inbreds. I. Dry matter yields and mineral elements composition Soll Scl. Soc. Amer. Proc. 37: 433-91.
- DOROFAEFF, F. D. and K. J. Ma NAUGHT.

 1962. Magnasium deficiency in white clover
 (Trifolium repens L.) on a pumice soilN. Z. L. agric Ras. 5: 310-17.
- DRAYCOTT, A. P. and M. J. DURRANT. 1970,

 The relationship between exchangeable soil and magnesium and response by sugarbeet to magnesium sulphate. J. agric. Sci Camb.

 75: 137-43.
- FINE, L. O. and D. G. SHANNON, 1976. Growth and composition of Sudan grass

- as high-calcium, low-magnoslum soil, Agron,
 J. 68: 671-74
- HOSSNER, R. and E. C. DOLL, 1970 Magnasium fertilization of potatoes as related to liming and potassium. Soi, Soi, Soc, Amer. Proc. 34: 772-74.
- JACKSON, M. L. 1973. Soil Chemical Analysis-Printice Hall of India (Pvt.) Ltd. New Delhi.
- LANYON, L. E., B. NAGHSHINGEH-POUR and E O McLEAN, 1977. Effect of pH level on yield and composition of Pearl Millet and Alfalfa in soils with differeing degrees of weathering. Soil Sci. Soc. Amer. J. 41: 389-94.
- LEE, C. R. and M. L. MacDONALD. 1977.

 Influence of soil amendments on potato growth, mineral nutrition, and tuber yield and quality on very strongly acid soils, Sci. Soc. Amer. J. 41: 573-77.
- MATHAN, K. K., S. SAMBOORNARAMAN, N BALAKRISHNAN and M. S. NEHRU. 1973. Magnesium fartilization of Nilgiris soil. Madras agric, J. 60: 1033-073
- McINOSA, S., P. CROOKS and K. SIMPSON, 1973. The effectsof applied N, K and Mg on the distribution of magnesium in the plant, Plant and soil, 39: 389-97
- PAGE, A. L. and F. T. BINGHAM, 1965. Potaesium-magnasium interrelationships in cotton. Calif. Agric, 19: 6-7.
- SAWYER, R. L. and S L. DALLYN. 1986. Magnesium fortilization or potatoes on Long Island. Am. Potato J. 43: 249-52.
- SNEDECOR, G. W., and W. C. COCHRAN.
 1967. Statistical Mathods. 6th Edn. Oxford
 and ISH Publishing Co., Etn. Press.
 Calcutta.
- YORK, E. T., R. BRADFIELD and M. PEECH 1954. Influence of lime and potassium on yield and cation composition of plants Soil Sci. 77: 53-63:

MAGNESIUM APPLICATION IN COMBINATION

Table 1 Effect of Treatments on the Mean Dry Matter Yield of Ragi Crop

(Eleucine Coracana Gaertn.) - Pot Culture

(g/pot - mean of five replications)

Treatments			Parkette -	Titukkal soil			Doddabetta soil			
. 22 *		-1.2	Root	Shoot	Grain	Total dry matter	Root	Shoot	Grain	Total dry matte
L.	ĸ,	- Mg _e	12.2	32.3	11.6	58.0	5.7	28.5	9.4	43.6
L.	Ko	Mg_1	124	39.9	16,0	68.3	10.0	28.1	10.0	48.1
Lo.	K.	Mg _{\$}	12.3	36.9	14.4	63.6	8.3	24.5	8.8	41.4
L.	Ko	Mg.	17.8	34.4	13.5	67.7	10.5	28.3	8.2	45.6
L.	K,	Mgo	17.1	27.1	10.5	54.7	8.₽	29.0	8.6	45.9
r.	K_{1}	Mg ₁	17.4	35.6	14.2	67.2	9.6	33.8	6.8	50.2
L.	K1	Mg ₂	15.2	36.2	13.2	64.8	10.4	30.5	10.2	51.1
Lo	Ks.	Mg∗	22.4	37.1	9.7	69.2	13.0	24.8	6.7	44.3
Lı	Ko	Mgo	14.5	32.1	9.6	46.2	. 8.0	25.3	. 6.5	39.8
L	Κo	Mg_1	16.1	38.2	10.3	84 6	9,5	25.3	6.4	44.2
",F",	K.	Mga	16.5	34.6	11.1	62.2	6.8	27.4	7.6	41.8
Ls	Ke	Mg.	17.5	33.8	8.9	56.2	10.6	28.9	5.7	43.1
L	K ₁	Mgo	17.2	29.3	11.6	58.1	,10.1	27.2	6.1	43.4
, L ₁	K,	Mg ₁	15.0	36,3	12.7	64.0	6.4	28.2	6.5	39.1
L ₁	K ₁	Mg,	14.9	27.5	11.9	64.3	10.0	28.1	6.4	44.8
L	ĸ	Mg _s	15.9	27.4	9.1	52.4	10.0	31.9	4.5	46.4
Mean	,		15.9	33.7	11.8	61.4	9.2	28.1	7,5	44.8

MATHAN AND CHIRANJIVI RAG

Table 2

RAGI ROOT YIELD (g/pot)

(a) TITUKKAL SOIL

i.	Lime x potash Interactions	Root yield	ii. Mg	levels Root yiel	đ
	L. K.	13.67	Mg	18.27	,
	L. K.	18,04	Mg	15.33	
	Ls Ke	16.18	Mg	14,73	1
	Li Ki	15.84	950		i
	S E.	1,19	2,1		
	C. D. (P=0.05)	3.60	c.	D. (P=0.05) 2.45	

(b) DODDABETTA SOIL

Mg. levels	Root yleld	ii. Mg. x K Interactions	Root yield
Ма	8.02	Mg ₆	6.84 9,20
Mg ₁	B.89	Mgs	9.72 8 00
Mgs	8,79	Mo.	7.72 10.04
Mgs	11.05	Mos	10.69 11.51
S. E.	0.60	S.E. (Mg at K)	0.79
C.D. (P=0.05)	1.69	. C. D (P=0.05)	2,26
		S. E. (K at Mg)	0.80
		C. D. (P-0.05)	2 32

March 1982)

MAGNESIUM APPLICATION IN COMBINATION

TABLE 3 RAGI SHOOT YIELD (g/pot)

a. TITUKKAL SOIL

b. DODDABETTA SOIL

Mg levels	Shoot yield	K leves	Shoot yield
Mo.	30.20	K.	26.95
Mg _T	37.50	κ,	29.18
Mg.	33.77	S. E.	0.58
Mg.	33.77	C. D. (P=0.05)	1.79
S. E.	1.63		
C. D. (P-0,05)	4,36		

[Vol. 69. No. 3.

MATHAN AND CHIRANJIVI RAO

Veble 4

RAGI GRAIN YIELD (g/Pot)

(a) TITUKKAL SOIL

Lime levels	Grain yield	Mg levels	Grain yiold
L	12.90	Mg.	10.83
L	10 64	Mg ₁	13.30
S. E.	0.71	Mg,	12.65
C. D. (P-Q.05)	2.18	Mga	10.30
.9.		S. E.	0.46
		C. D. (P=0.05)	1.31

(b) DODDABETTA SOIL

Lime levels	Grain y jeld	Mg levels	Grain yield
	8.58	Mp.	7.65
L ₃	8.49	Mg ₁ .	7.93
5. £	0 22	Mg.	8.24
C. D. (P-0.05)	0.68	Mgs	6.31
		S. E.	0,45
		C. D. (P=0.05)	1.29

E lave!s

K.	8.08
K.	5.89
8.8.	0.23
0.0.00-0.00	0.68

March 1983]

MAGNESIUM APPLICATION IN COMBINATION

Table 5

DRY MATTER YIELD OF RAGI CROP (g/pot)

No. of the last of	Company of the contract of the	as of miles enor (gipot)	
s, Lime Levels	Pooled Analysis	Titukka soli	Doddebetta soll
.	55.12	63.96	46.28
L _k	50.11	57,39	42.83
S. Ł.	1.08	2.03	0.77
C. D. (P=0.05) b. Mg. levels	3.16	6.25	2.38
Mg.	48,41	63.80	
Mgz	55.83	66.13	
Mg ₁	55.03	61.41	
Mge	53.11	61.35	
S. E.	1.16	1.90	
C. D. (P-0.05)	3-25	5.43	
c. Solls			
Titukkal	60.67		
Doddabetta	44.56		
S. E.	1.08		
C. D. (P=0.05)	3.16		
d. Soll x Mg			
Interactions	Titukkai	Doddabstta	
Mg.	53.80	43,19	

u.	SULL	×	rng
			11.5

interactions	Titukkai	Doddabstta
Mg.	53.80	43,19
Mgl	66.13	45.53
Mg.	61.41	44.65
Mgz	61.35	44.87
S. E. (Met at Soil)	1.63	
C. D. (P-0,05)	4.86	
S. E. (Soil at Mg)	1.79	
C. D. (P-0.05)	5,19	

MATHAN AND CHIRANJIVI. RAO

Table 6 Top / Root Ratio of Rahl Crop (Eleucine Coracene Gaerth.) Pot Experiment

	E	*			
Soils	Treatments	Mgo	Way	Mg _s	Mg.
Fitukkal Soil	Lo Ko	3.59	4.51	4.17	2.70
	L, Kı	2.20	2.87	3.25	2.09
	La Ko	2.88	3,02	2.27	2.44
	L _s K _s	2.38	3.27	2,65	2.30
**	Mean	2,51	3.42	3.21	2.38
	,				25 (1 4 (1) 27
llos stredebbod	L. O.	6-65	3.81	4.12	3.53
	Lo Ki	4.53	4.23	3,92	2.41
	L ₁ K _o	3.98	3.68	5,15	5.07
	L ₁ K ₁	3,30	5.43	3,05	3.64
	Mean	4.62	4.28	4.14	3.16
				4	40.000

Mg. ... No magnesium

Mg. ... 60 kg Mg/ha as MgSO4 . 7H,O

Mg, ... 100 kg Mg/ha as MgSO4 . 7H2O

Mg. ... 150 kg Mg/ha as MJSO. . 7H,0

Le ... No lime

Lt ... Lims at 18.8 tonnos/ha for Titukkel soll

19.9 tonnes/ha for Doddabetta sell

Ko ... No potassium

K1 ... 100 kg KaD/ha as KaSO.

