Madras agric, J. 69. (11): 713-717 November 1982

Investigations on induced macromutants in Cajanus cajan (L.) Mill sp.*

N. NADARAJANI, R. SETELIPATHI RAMALINGAMS and N. SIVASAMY

In a study of induced mutagenesis in Cajanus cajan, the frequency of macromutants increased with increasing doses of mutagens up to certain level and thereafter decreased. DES and glimma rays were potent in inducing macromutants in SA. 1 and CO. 2 respectively in both the varieties mutants affecting duration were more frequent. Economically useful-mutants possessing increased number of pods per plant, dwarf habit, earliness, uniform maturity and bold seed size were isolated indicating the scope for improving redgram through induced mutagenesis coupled with conventional breeding procedures.

Redgram is the major grain leugme cultivated in Tamil Nadu. Inspite of its important role in solving the protein malnutrition, breeding and genetic research on this crop have been very much limited. Investigations have, therefore, been taken up for induction of mutations in redgram to obtain greater variability and facilitate the selection of desired types.

MATERIAL AND METHODS

Two redgram (Cajanus cajan (L.) Mill sp.) varieties viz., SA. 1, a long duration variety with open plant body and CO. 2, a medium duration variety with compact plant body formed the material. Gamma irradiation was carried out using 6°Co gamma cell installed at Tamil Nadu Agricultural University, Coimbatore. The doses employed were 1, 5, 10, 15, 20, 25, 30 and 40 krad. Treatments with Diethyl Sulphate were performed by keeping the pre-

water soaked seeds immersed for 6 hours in the concentrations of 3, 6, 9, 12, and 15 mM.

After mutagenic treatments, M₁ generation was raised. The M₂ generation was raised as individual M₁ plant and M₁ branch progeny bases. Scoring of macromutations was done continuously during the entire life cycle of the plants. These mutants were classified on the basis of most conspicuous mutant character and described. Scholz (1969) suggested that those distinguished as viable, macro and systematic mutations could be grouped under the term macromutations and this terminology is followed in the present discussion.

RESULTS AND DISCUSSION

a) Frequency: The frequency of macromutations computed on M₁ plant, M₁ branch and M₂ plant bases are presented in table 1. In both the

^{*} Part of M.Sc. (Ag.) Thesis submitted by the Senior Author to Tamil Nadu Agricultural University, Colmbators-3.

^{1.} Assistant Professor, School of Genetics, TNAU, Coimbatore.

^{2.} Principal Krishi-Vigyan Kendra, Pondicherry.

^{3. -}Assistant Professor, Dept. of Agri, Botany, AC & RI, Madurai.

varieties, the frequency of macromutations on M₁ plant, M₁ branch and M₂ plant bases increased with doses of gamma rays and DES up to certain dose level and decreased with further increase in doses. The potency of mutagens inducing maximum frequencies varied with varieties (Rangasamy, 1973). DES and gamma rays were potent respectively in SA. 1 and CO. 2. In CO.2 macromutation was not observed at highest doses employed.

b) spectrum: A wide spectra of macromutants affecting various morphological characters have been identified in the M. generation following treatments with gamma rays (84 in SA. 1 and 128 in CO. 2), and DES (64 in SA. 1 and 43 in CO.2) (Table 2). The first occurrence of macromutants in Ma and in smaller proportion suggested that each of them might represent changes in a single recessive gene from their parents. Gaul (1964) stated that most of the mutations in diploid organisms were recessive. Among the various classes, mutants affecting duration followed by seed coat colour and pod after gamma irradiation, and mutants for duration and pod after DES treatments, were more frequent than other types in SA.1. Mutants affecting duration were more frequent followed by stature and pod mutants than others in gamma irradiated Ms population of CO. 2 In DES treated population, mutants for duration were more frequent followed by pod and stature mutants than the rest.

The importance of some of the macromutants are discussed below.

c) Stature mutents: They include tall, dwarf, spreading, branchless and weak and slow growing types. Among these branchless types are of more interest. They offer scope for growing as inter-crop with crops like groundnut in view of dwarf and non-branching habit. Jain (1975) state that pulses are ideally suited for intercropping with a wide variety of crops like sugarcane, cotton, sorghum and plantation crops. Kaul et al. (1975) proposed that in an intercropping system, the inter-crops grown should possess certain good characteristics, viz., short growing period, short stature and the absence of competition of nutrients. It is worth mentioning that the barnchless mutant isolated in the present study, would partly satisfy the objective proposed by Kaul et al., (1975). However, the grain yield in these mutant types has to be stepped up by appropriate breeding programme. It will be of interest to note that in SA. 1 branchless mutants occurred with a frequency of 4.7 and 4.6 per cent respectively when treated with gamma rays and DES (Table 2). This branchless character can definitely contribute to an overall earliness. In Tamil Nadu there is an appreciable area of sorghum under rainfed cropping with duration of 135 to 140 days. The branchless mutant of SA. 1 would be of great value in intercropping with sorghum irsuch areas.

Tall mutants occurred more frequently than dwarfs (Table 2). The dwarf mutants isolated in CO. 2 having 65 cm and less height (105-110 cm-CO, 2) showed alterations in more than

Table 1, Frequency of macromutation in Ma generation

	• d					**:	ry: G		Mutation	Mutation frequency	_		
Mutagen and dose	71	No. of N genies	No. of N ₁ plant pro- genies scored	No. of M ₁ genies	No. of M ₁ branch pro- genies scored	No. of Ma	No. of M ₃ plants. scored	Peg	Per 100 M ₁	Per 1 bran	Per 100 M ₁ branches	Per 100	Per 100 Mg
: +0 :t: :	-2	SA, 1	co. 2	SA. 1	CO. 2	SA. 1	co. 2	SA, 1	co. 2	SA. 1	c0. 2	SA, 1	co, 2.
			£ .	****	****	0000	2000			14			
I. Control		102	# .	781	934	09/7	2040	١.	, ,	ı	1	1	I
II. Gemme reys (krad	(krad)			- ,		, 1) 1: 2	14. 14. 20.			7.
· ·		06	16	223	256	2014	2236	8.9	9.3	6.3	6,6	0.8	-
, ED		74	. 06	172	, 262	1523	1985	12,2	12.2	10.5	8.4	6,0	1.5
0,	7	20	73	186	183	1156	1364	1.0	15,1	11.8	12.0	7	2.1
		61	69	165	178	980	985		21.7	13.3	16.9	2.2	2.3
20		42	40	115	109	675	876		20,0	9,6	18,4	6.0	1,3
25.		27	35	63	- 82	282	652		17.1	1.1	8.1	1.2	6.0
30	. ; ·	F	18	- 24	. 62	276	495		11	8.3	8.3	0,7	0.8
. 40		80	10	19	24	174	187	12,5	Î	5,3	Ĩ	9.0	1
III. DES (mM)	1							:		12			
6		88	87	208	232	1876	2132	6.8	5.8	5.3	3.0	9.0	0.3
9		20	72 .	121	178	1092	1756	14.0	8,3	11.6	5,1	1.5	9.0
6		. 42	54	104	141	926	1315	16.7		14.4	6.6	2.5	1.
12		38	32	97	80	823	756	10,5	6.3	9,3	3.8	:	1.7
15		13	12	32	29	291	313	7.7	1	3.1	ļ	0 7	e d

one trait such as dwarf combining reduction in internodal length. Similar results were reported by Rangaswamy (1973) in sesame. The tall mutants, in general, were late and yielded equal to control in respect of grain weight. Hence, tall mutants may have limited economic value.

- d) Mutants for duration: The duration mutants were either early or late. At maturity the earliness became more conspicuous in 13 mutants of SA.1 and 14 of CO.2 which showed synchrony in maturity of most of the pods by 20 days earlier to their respective controls (SA.1 - 170 days and CO.2 -115 days). The long duration obsetved in most of the redgram varieties under cultivation handicapped their inclusion in multiple cropping pattern. identification of early types in the present study has broken this handicap and gave for evolving early maturing varieties which could be fitted in such a cropping pattern. Eventhough these mutants gave low yield than their controls, they could be tried as an intercrop with other crops. Early mutants coupled with synchronized maturity of almsot all the pods is a welcome fea-Hence, these mutants offer scope for further study to improve yield potential. The lateness of the mutants isolated, may be due to the: mitotic arrest in the flower primordia (Vindhiya Varman et al., 1980).
- e) Pod and seed mutants: A major production advance in pulses, similar to that obtained in cereals, could be achieved by evolution of high yielding types followed by judicial management, practices (Jain, 1975). For this aspect,

the mutants isolated in the present study showing increased number of pods (642 to 756 in SA. 1 mutants as against 325 to 370 in SA, 1 and 191 to 214 in CO 2 mutants as against 165-190 in CO. 2), also showing increase in seed yield compared to the parent will offer scope for exploitation. Among them, six of CO. 2 and four of SA.1 yielding more than the respective controls also had compact plant type and determinate growth habit, Identification of increased number of seeds per pod (4 to 6 as against 3 or 4 in SA. 1) and bold-seeded type (100 seed weight ranged from 8.9 to 9.2 grams as against 7.5 to 7.7 in SA.) resulting in increased single plant yield (91.3 to 96.4 grams in mutants as against 72.8 to 75.6 in SA.1) offer further scope in maximising yield levejs.

Mutants possessing blackish-purple, light red, dull yellow and creamy white seed-coat colour were isolated in SA. 1 whose seed-coat colour being reddish brown. Various seed-coat colour mutants were reported by Moh (1971) in French bean, Rao and Jana (1976) in blackgram and Vindhiya Varman et al. (1980) in Vigna marina

f) Other mutnats: Other types of mutants, included sterile mutants, stem fasciation, tetrafoliate leaves and mutants with 2 to 4 clusters per axil as against one cluster in praent. In tetra foliate leaf mutants. One or two noder gave rise to leaves with four leaf lets instead of three leaflets. Multifoliate leaf mutants are of common occurrence in cowpea (Louis and Sundaram, 1973) and Vigna marina (Vindhiya Varman et al., 1980)

REFERENCES

GAUL, H. 1964 Mutations in plant breeding. Radiat, Bot., 4: 155-232.

JAIN H.K. 1975. Breeding for yield and other attributes in grain legumes. Indian J Genet. 35: 169-187

KAUL, J.N., H. S. SEKHON, and B. S. DAHIYA 1975. Inter-cropping studies with pigeon pea. Indian J. Genet., 35: 242-247.

LOUIS, I.H. and M.K. SUNDARAM 1973. An induced multicarpellate condition in Vigna sinensis Savi. Madras agric J., 60: 1849

MOH C.C. 1971. Mutation breeding in seedcoat colours of beans, (Phaseolus vulgaris L.). Euphytica, 20: 119-25. RANGASWAMY, M. 1973. Induced mutagenesis in gingelly (Sesamum indicum L.) with gamma rays and EMS. M.Sc. (Ag.) Dissertation (Unpubl), Tamil Nadu Agrl. University, Coimbatore.

RAO, S. A. and M. K. JANA, 1976. Alternation of seed characters in blackgram. *Iudian J. agric. Sci.*, 44: 657-660.

SCHOLZ, F. 1969, Significance of induced macromutations in plant breeding. Jap. J. Geuet., 44. (Suppl. 1): 417-24.

VINDHIYA VARMAN, P. P. CHANDRASEKA-RAN, and R. RATHNASAMY, 1980, Induced viable mutants in vigna marina (Burn.) Merr. Madras agric, J. 67: 498-96.

Table 2. Spestrum of macromutants in M2 generation;

	Mutants	Por	centage of individu		ints to the
	* 3	Gamma rays		DES	E .
	4	SA. 1	CO,2	SA. 1	CO. 2
	2	3	4	5	6
	Stature mutants		#1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11404
	a) Tall types	·	6.3	, 	4.7
,	b) Dwarf types	,	3.9		4.7
	c Spreading types .	-	7.0	4,6	13.9
	d) Branchless types	4.7	7.8	1.5	10.0
	e) Weak and slow growing	2.4	-		
ia -	Metants for duration			****	13,9
	a) Early types	9.5	14.1	19.7	7.0
	b) Late types	17.8	15.6	13.7 7.6	7.0
	c) Uniform maturity	9,5	8.6	7.0	7.0
ii.	Pod mutants		ŧ		40.0
12	a) Increased number of pods	13.1	20.3	9.1	18,6
	b) Number of seeds per pod	1.2		4,6	7.0
	c) Crinkled Pod shape	-	1.1	_	7.0
٧.	Seed size mutants	4		3.2	
	a) Bold seeded types	3.6	 -	1,5	-
	b) Small seeded type	2,4	2.3	1.5	
v.	Seed-coat colour mutants			, N	
٧.	A STATE OF THE STA	2.4	-		1111
	a) Blackish purple b Light red	3.6		1.5	
		2.4		4.5	-
	d) Creamy white	8.3		3.0	
VI.	Other mutants	,	14		
VI.	a) - Linear leaves		4 > 4	4,5	<u> </u>
	b) Small and bisected leaves	3.6	2.3		
	c) Tetrafoliste leaves	1.2	*	3.0	***
	d) Stem fasciation	10.7	6.3	9,1	139
	e) More than one cluster per axil	3.6	-	6.1	7.0
	f) Sterile mutants	_	3.9	4.5	7.0 2.3
	g) Semi-sterile mutants	-	1.6 .		
	Total	100.0	100,0	100.0	100.0