Madres agric, J. 69. (10): 637-543 October 1982

Induced Polygenic Mutation in Ragi* (Eleusine coracana (L.) Gaertn.)

T. S. RAVEENDRAN1, K. MEENAKSHIP, and R. APPADURAI*

Two ragi genotypes MS 2698 (8ihar) and Sarada (Andhra Pradesh) were treated with N-methyl-N-nitroso N'-nitroguanidine. The mean, genetic variance, heritability and genetic advance were estimated in the M₂ and M₃ generation of these treated genotypes for seven metrical traits. In general, the mean values of most of the treatments in M₂ and M₃ did not substantially deviate from the control. There was, an increase in the genetic variance both in the M₂ and M₃. The M₃ variance of plant height was higher than that of M₂. For all the other characters studied, the M₃ variance was less than the M₂ variance. The heritability and genetic advance values were higher in the treatments than in the Control. Short duration mutants in Sarada and bold-seeded mutants in MS 2698 were obtained as a result of these investigations.

Ragi or finger millet is one of the most important millet crops grown in India. It is a highly self-pollinated crop and the variability in this crop is not as in the cross-fertilized crops. There fore, for enlarging the variability and to increase the scope of selection for yield potential in this crop, induced mutagenesis has been resorted to. The consequent changes in the polygene system measured in terms of mean and genotypic variance of chosen quantitative characters are presented in this paper.

MATERIAL AND METHODS

Two ragi genotypes MS 2698 (Bihar) with a duration of 75 days and Sarada (Andhra Pradesh) maturing in 110 days were treated with N methyl-N nitroso-N guanidine, a chemical mutagen in solid form. Based on LD₅₀ values on survival of seedlings (Raveendran e_f

al., 1980) the chemical was used at 0, 5.0 and 10.0 mM concentrations each for two and four hours on both the varieties. Well filled seeds with moisture content of 10.5 per cent were pre-soaked in distilled water for eight hours prior to the chemical treatment. All the surviving plants were advanced to M. There were a total number of 249 Ms families in MS 2698 and 212 in Sarada. The treated families of both the genotypes along with respective controls were raised in two separate trials in randomised block design with two replications The crop was provided with recommended package of practices. random plants were flag labelled at flowering in each row in each replication and observations were recorded on plant height at maturity, days to 50 per cent bloom, number of productive tillers, number of fingers per spike, mean length of fin-

^{1,2} and 3-School of Genetics, Tamil Nadu Agricultural University.

^{*} Part of M. Sc.. (Ag.) thesis submitted to the Tamil Nadu Agricultural University by the first author.

gers, grain yield per plant and hundred grain weight. The phenotypic variance was partitioned following the method suggested by Allard (1960) and genotypic variance and heritability were estimated: The genetic advance was calculated at five per cent selection intensity (Johnson et al., 1955).

Seventy two plants from the Manilles of MS 2698 and 55 from Sarada which did not segregate for visible mutations were advanced to Manilles from each of the two genotypes were raised in two separate trials laid out in randomised block design with three replications. The same characters that were studied in Manuere measured in Manalso for ten sample plants per row per replication. The statistical analysis was also similar to that adopted for Manalso

RESULTS AND DISCUSSION

The mean genotypic variance, heritability and genetic advance for all the characters are presented in tables 1 a to 1 d.

In general, the mean values of most of the treatments in Mi and Mi for the characters plant height, finger number, finger length and grain yield did not deviate substantially from that of the respective control populations. Although the general observations on quantitative characters by most of the investigators indicated a slight negative shift in mean values, the choice of the optimum LD₃₀ values for survival for raising M₂ and M₃ generations in the present study might have resulted in

a substantial reduction of deleterious changes thereby maintaining the original mean values. However, in respect of days to 50 per cent bloom, the mean values of the treatments in Sarada were shifted towards the negative direction in Ma while it fluctuated on either side in Mr. : This reduction in mean value may be attributed to the presence of a larger number of mutants with negative effect than those with positive effect. In this genotype, several early maturing mutants and dwarf variants were obtained in the Ma. Effects such as appearance of early mutants in a late genotype and dwarf mutarits in tall genotype through mutagenesis has been hypothesised by Brock (1965) to be due to random mutations shifting the mean away from the direction of the previous selection pressure on the parental genotype. Early mutants in late maturing strain ragi CO 1 were earlier identified by Thangavelu (1973). A positive shift in the mean, value, was also observed in the case of productive tillers in the Mageneration of MS 2698. indicating that high tillering mutants have out-numbered those with few tillers. A positive shift in the mean productive tillers in ragi was reported by Goud et.al., (1971).

In both the genotypes under study, in the Ma and Ma generations, there was an increase in the genetic variance for most of the traits in the treated population as compared to the control. This is evidently due to the genetic segregation in the Ma progenies of Ma individuals heterozygous for the mutations. Previous reports on the increased variance as compared to the control in

this crop were made by Sreekantaradhya (1971), Goud et. al., (1971) and Thangavelu (1973). The M2 variance in respect of plant height was higher than that of the M2 suggesting that the segregation of genes for this character persisted in M3 generation also. However, with regard to other characters studied, the M3 variance was less than that of M2 in most of the treatments.

heritability and genetic The advance values of most of the treatments in the Ma and M. generations of both the genotypes were higher than that of the respective control populations which may be due to the increased genetic variance. Previous reports of high heritabliity estimates were made by Thangavelu (1973) in ragi. In respect of 100 grain weight, the heritability and genetic advance estimates higher in the Ma than in the M2. The genotype MS 2698, in particular, showed this trend of higher genetic advance for seed size in M, indicating that there is good scope for obtaining mutants with bold seeds in small-seeded varieties. In other characters studied, there was a general decline in the values of these parameters in Ms as compared - to M.-Aastveit and Gaul (1967), working in barley obtained higher values of heritability and genetic advance in the earlier generations of mutagen treated material. However, it was observed that these high values were not maintained in the ater generations. This phenomen on was attributed to the non-additive gene action, genotype environment interaction or a combination to both, while such hypothesis may hold good in the present investigation, the rapid attainment of homozygosity in such a highly self-fertilized crop plant may also result in the quick exhaustion of variability.

REFERENCES -

- AASTVEIT, K. and H. GAUL, 1967. Variation and selection of micromutations, Radiation Bot., 7: 353-61.
- ALLARD, R.W. 1960. Principles of Plant Breeding. John wiley and Sons, New York, PP, 485.
- BROCK, R.D. 1965, Induced mutations affecting quantitative characters. The Use of Induced Mutations in plant Breeding (Rep., FAO/IAEA, Tech. Meeting Rome, 1964)

 Pergamon Press, pp. 451-64.
- GOUD, J. V., K. M. D. NAYAR and M. C. RAO. 1971. Induced polygenic mutation in ragi. Indian J.Genet., 31: 202-08.
- JOHNSON, H.W., H.F. ROBINSON and R.E. COMSTOCK, 1965. Estimates of genetic and environmental variation in Soyabean. Agron, J., 47; 314—18.
- RAVEENDRAN, T. S., K. MEENAKSHI and R APPADURAI, 1980. Biological effects and chlorophyll mutations induced by NG in ragi. Madras agric. J., 67 (2); 113—18.
- SREEKANTARADHYA. 1971, Induced mutagenesis in ragi (Eleusine coracana Gaertm.) with gamma rays and EMS, M.Sc. (Ag.) Dissertation, Madras University.
- THANGAVELU. S. 1973, Studies on the Induced polygenic mutations in M₂ and M₄ generations of ragi. M.Sc. (Ag.) Dissertation Tamil Nadu Agricultural University.

RAVEENDRAN et. al.

TABLE 1a Mean and Genotypic variance in Ma and Ma generations.

Treatmonts	Mean + SE		Genotypic variance		Heritability	Genetic Advance	
	M ₂		M ₂	Ma	M ₂ M ₃	M _s M _a	
		<u></u>	4 1	4- 4-		et en	
		, (a)	Plant heig	ht (cm,)			
MS. 2698							
Cantral	100.0 . 2.4	100.0 1.4	1,13	18,52	17,6 29,8	1.58 7.44	
and the second second second		100.0 ; 1.4	33,20		10.6 52.6	6.51 11.49	
NG 5 mM (2h)		+			14.0 30.1	8.56 9.89	
NG 10 m4/ (2h			43,39 13,04	* . T . S	8.6 42.1	3.67 15.68	
NG 5 mM (4h)		-			47.2 45.2	9.58 23.54	
NG 10 mM (4h)	100,2 £ 3,3	52.112.3	15.51	110,00	41,2 40,2		
20 8 8 7	$\phi = \phi \circ \sigma_{\alpha}^{\beta} : \cdots : \frac{\alpha}{\alpha}$, A	1	85 G			
Sarada	100 A . T.E	100,0 r 1,7	15.20		14.4 6.3	3.63 2.37	
Control NG 5 mM (2h)		76.7	28.68	19 1	40:4 7.4	8,41 3,62	
NG 10 mM (2h)			133,21		66.3 32.9	- 그리, 장마다 그리 얼마나라다다	
NG 5 mM (4h)			89.43	20.0	77.0 40.8	20.35 11.40	
NG 10 mM (4h)		. "	132,70	220.85	55.2 33.6	21.20 - 16.87	
iso, to min (411)	33,0 [0.0	100.1 [1,0	102,70	110.00	7-11		
*		ALV PA	to EO m	ercent bloom	-		
3 -		(b) Da	ys to bu p	ercettt bloom	*		
MS, 2698	4	46	IT S				
Control	100,0±1,8	100,0±0.8	0.40	2.03	0,5 8.0	0.15 1.98	
NG 5 mM (2h)	99.7±1.3	100,0±0,8	14,04	4.58	23,3 24,3	6.92 4 32	
NG 10 mM (2h	100.6±1.4	96.3±1.4	* .	4.78	26.8 13,5	5.44 4.06	
NG 5 mM (4h)					19.8 12.6	3.85 3.39	
NG 10 mM (4h	100.2±1.4	98.0±1.9	4,09	1.56	19.1 3.5	3.08 1.15	
47	\$ (a)	(* * * *)) () (*)	7 4	- 44 T - "	a strain of		
Serada		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-				
2	down the	Austa Aus	11 2 2		7000au 703-3 1	160 400	
Control		100.0±1.1		4	Street Lite acid	1,69 4,89	
NG 5 mM (2h	and the second second		A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8 CHENCY 1 BURET	2.74 8.46 2.46 4.09	
NG 10 mM (2h	DOMESTIC AND ADDRESS OF THE PARTY NAMED IN	41 9 9 45		1. 1. 1. 1. W. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			
NG 5 mM (4h		1 4 5 6 7 7	4 % A	B K F C B C	28.2 4.6		
NG 10 mM (4h)	98,7±0.6	95.4±1.2	8,19	12,69	50,9 35,3	5.00 7,10	

October 1982] POLYGENIC MUTATION IN RAGI

TABLE 1b Mean and Variance in Ma and Ma generations.

Treatments	Mean±SE			Genotypic variance		Heritability (%)		
	-Ma	M ₃	М,	Ma	M,	M _s	M ₃	M
		-						
		(c) Numb	er of prod	uctive till	ers/plant			
MS. 2698								
Control	100,0±9.1	100.0±4.9	0,11	0.08	3.8	6,8	3,48	5.73
NG 5 mM (2h)	104.4±7.1	124,9±2,4	2,59	0.17	28.9	28.8	41.88	17,60
NG 10 mM (2h)	101.5±7.4	122.9±6.8	1.46	0.25	91,6	14.0	18,60	15.08
NG 5 mM (4h)	105,2±6.9	122.9±6.4	0.79	0,09	17.4	7.7	17 99	6.74
NG 10 mM (4h)		127.1±7,8	1.33	0.89	19,1	36.1	26,0	44.84
Sarada					÷	-		
Control	100,0±3,4	100 0±12.9	0.57	0.02	8.6	1.0	11.04	1,22
NG . 5 mM (2h).	93,9±4,1	Aller on a second second	1,99	0.11	34.2	9.2	44.04	10,00
NG 10 mM (2h)	96.4±5.1	96.1± 7.3	0.87	0.02	18.1	1.2	20,71	1,39
NG 5 mM (4h)	101,9±4.1	95,3±18,1	2 34	0.15	40.5	61.9	47.73	25,98
NG 10 mM (4h)	Facility of the second	96.9±15.5	0,91	0.39	34.9	28.0	28.12	30.19
	#1 *	(d) N	umber fing	ers/panic	le:			
	- 4	£ 2		7				
MS. 2698				-:				
Control	100,0±1,9	100,0±4.9	0.71	0.15	14.7	9.9	5.84	3,40
NG 5 mM (2h)	102,2±1.4	93,2±1,2	2,42	1.50	54,3	58,1	21.63	28.16
NG 10 mM (2h).	101.1±1.4	93.6±2.1	2.91	0.60	70.0	23,0	26.20	11,16
NG 5 mM (4h)	98.7±1.8	95,9±±3.2	1.04	1.46	35.7	24.2	11,99	17.46
VG 10 mM (4h)		98,2±2,2	1,67	0.21	52,6	. 10.5	15 59	4.38
Serada								
Control	100.0±5.6	100,0±4,1	0.14	0.15	14.4	5,0	8,69	2,54
NG 5 mM (2h)	101,6±2,3	97.6±2.4	0.71	0.66	64.4	18.7	19.51	10,56
NG 10 mM (2h)		95.7±3.0	3 22	0.15	36.3	5.7	31.36	2 82
NG 5 mM (4h)		95.0±2.9 -	1.31	0.75	68.9	31.0	28.21	14.96
VG 10 mM (4h)	102 7-33	97.9±3.7	1,60	1.33	72,6	47.1	30.63	23,83

TABLE 1c Mean and Variance in M, and Ma generations,

	100 mg/g/		Gen	otypic	н	eritability		Genetic	
Treatments	M	ean + SE	4. 41	iance	(%)			Advance.	
	M ₂	Ma	M ₂	M ₃	M ₂	М,	М,	М	
		(e) Numbe	r of produ	ctive tillers/	plant (cm.)			
MS_2698									
Control	100,0 ±3.7	100.0±4,4	0.51	0.20 1	0.3	18,2	11.46	9.50	
NG 5 mM (2h)	104 2±3.2	96,8±1.7	0.50	5.00-25 % S	0.3	21.7	20,10	9,62	
NG 10 mM (2h	102.2±4.7	97.1 ± 1.2	4.46	0.16 7	3.0	90.7	89,88	19.47	
NG 5 m W (4h)	$105,6 \pm 3.0$	98.8±2.2	3.08	1.32	B3.1	64,5	76.69	46,94	
NG 10 m 1/ (4h)	103,5±6,2	96.1±2.4	0.23	0.27 1	9,1	29.9	10.28	14.97	
						. 4	5.	, . T	
Sarada			£			. 5	1.8	1 3 4	
	1.9	. 15kg - 15g#	1 2 1	1410.7	uges a	40-04-T	Tu	i transak (
Control	100,0±1.4		0.26	0.33	5,7	18.2	4.29	9.66	
NG 5 mM (2h)		******	0.61		54.7	14.3	21,21	9.06	
NG 10 mM (2h)		99.6± 2.9	0,83	2.72 \$5.5	35.8	37.0	19,52	20.39	
NG 5 mM (4h NG 10 mM (4h		340000	1 04 0 47	The state of the s	75,4 60,6	28.8 33.1	31.71 19.37	21,69 6.87	
no is inn tan)	90192240	30.34	0.07	00.0		32.00	0.0,	
		(f) Gr	ain weight	plant (g)					
MS, 2698									
Control	100.0±17.3	100,0±5.0	4.66	1,38 1	2.8	17.5	32,89	20,12	
NG 5 mM (2h)	**************************************	90.8±2.4	10.84	40 20 20 20 20	7.8	17.5 43.4	53.92	37.50	
NG 10 mW (2h)		92.2±7.2	15.59	2,47 2	2.5	62.8	73.22	55,76	
NG 5 mM (4h)		986±3.4	10.64	3.01 3	1.4	53.1	68.73	52.97	
NG 10 mM (4h	89.2±7,5	105,0±9,2	11,19	6.45 3	1.4	31.6	73.7	56.02	
				1 1 E		11	500		
Sarada		-	- ' ,- :		1.2		1	2 = 10 × 7 × 10 +	
W., 6977	******	100 0 2 2	0.65		6.4	14.0	3.50	19 13	
Control	100.0±2.2	100.0±3,2	0.65	3,25	0.4	12.0	3,59	19.13	
NG 5 mM (2h			2.65	the state of the s	1.7	13.9 49.2	22.47 16.82	47 67	
NG 10 mM _i (2h NG 5 mM (4h		MT - W - T	3 12	1.00	29.6 26.4	14.4	12.80	22.55	
NG 10 mM (4)		94.8±5.9	2.59		6.5	19.2			

October 1982)

POLYGENIC MUTATION IN RAGI

TABLE 1d. Mean and genotypic variance in Me and Ma generation

Treatments	Mean + SE		Genotypic Variance		Heritability %		Genetic Advance	
	Ma	Ma	M ₂	M _I	M ₂ -	Ma	Mz	- М ₀
		à	100 grain	weight (9)		** ***	
MS 2698			4		e. * *			
Control	100.0±07	100,0±0,7	2.47	3,72	17.5	17.5	0,69	0.85
NG 5 m 1/ (2h)	101,5±0,6	99.0±1.4	6.38	6,89	21,3	29,5	1,20	1.47
N3 10 mM (2h)	93.3±0.6	91,8±1,6	7.21	13,54	38.7	30,6	1,89	2,34
NG 5 m 1/ (4h)	97.4±05	92,8±0,7	10.18	15.38	39.7	42,5	2.18	2,92
VG 10 mM (4h)	96,9±0.6	97,4±0,5	9.43	13.98	43.5	39.5	2.21	2.56
Sarada				,		# # #	4	
Inotrol	100.0±0.7	100.0±0.8	1.98	6.58	6.9	3.9	0.25	0.32
IG 5 mM (2h)	99.4±0.6	103.6±0.7	4.35	10.65	18,5	23.5	0.60	1.02
IG 10 mM (2h)	103.6±0.7	101.0±0,7	3.18	11.37	18.0	40.6	0.69	1,41
NG 5 mM (4h)	102.6±0.6	100.0±0.9	9.25	9.51	38.6	52.5	1.20	1.48
NG 10 mM (4h)	102.3±0.7	102.6±0.8	10.31	11.28	51,7	49.7	1.49	1.53

Mean and standard error expressed as percentage on control.

Genetic Advance expressed as percentage on mean.