Effect of Fish and Chicken Wastes on the Microbial Population and Biogas Generation

P. RAJASEKARAN

An experiment was conducted to study the effect of incorporation of fish and chicken wastes on comparative biogas production and distribution of microorganisms. The treatments had equal quantity of cattle dung and water mixed with old slurry and fish and chicken wastes in to proportion of 4: 1: 1. Two sets of experiments were conducted is, one set kept above ground and the other kept burried in soil, for 12 weeks and gas generated were measured for every 24 hours. The fish wastes incorparated above ground (4: 1: 1) gave the maximum average gas output of 1088 cc/day over 12 weeks compared to 899 cc/day of chicken wastes. Similarly the maximum bacterial population of 47.0 × 106/g was estimated in fish wastes kept on the ground compared to chicken slurry (33 8 × 106/g) fish slurry was to found to have fish celluloytic activity and also produced fish methanogenic activity.

Bioconversion of organic wastes through anaerobic digestion offers high degree of waste stabilization and production of biogas. The biogas generation using cattle dung has been studied by Desai and Biawas (1945) and Acharya (1958). Any reduction in the consumption of dung and its substitution with various wastes will certainly benefit the small farmers in several ways. Judicious combination of various wastes along with cow dung could not only maximise biogas production at a cheaper cost but also provide organic manure rich in N, P. K content. The utilization of other livestock excreta viz; pig, goat and poultry has also been studied by Bansal et al (1976). Hence an investigation was carried out to study the effect on incorporation of fish and chicken wastes on comparative biogas

production and the distribution of microorganisms.

MATERIAL AND METHODS

The cattle dung and old slurry utilised in this study were obtained locally from the Tamil Nadu Agricultural University dairy farm. The chicken wastes i.e. the intestine along with its contents and the feather removed unwanted skin were obtained from the poultry section. The fish wastes viz; the intestines, the skin scrapings and caudal fin were obtained from the local market. The chicken and fish wastes were chopped into one to two inch bits before they were mixed with cow dung.

The cattle dung slurry was prepared by mixing equal quantity of water and dung (v/v). Measured quantity of dung slurry was taken in an empty, clean

Associate Professor, Department of Agricultural Microbiology The Tamil Nadu Agricultural University, Ceimbatore-641 003,

five litre capacity tin digesters and to which the old slurry and the wastes ! (fish and chicken wastes) were added in the proportion of 4:1:1 (v/v) respects tively: Two sets of experiments were carried out. One set of treatments was kept above ground and the other kept burried in soil to study the effect. The experiment was allowed to progress continuously for a period 12 weeks and the gas generated over every 24 hours was measured daily by the water displacement method.

The biodigested slurry specimens from the above ground and below ground, wastes incoroporated treatments were collected and screened for the distribution of various organisms viz: bacteria, acid forming bacteria, cellulolytic organisms, methanogenic bacteria, coliforms and fecal streptococci following standard procedures. The bacterial colonies were enumerated on the third day employing nutrient agar media. The acid forming bacteria were enumerated as per the method of chynoweth and Mah (1977). The cellulolytic organisms were screened by employing Dubo's cellulose medium. The coliforms and fecal streptococcal counts were taken on the second day after incubation at 370 and 44°c respectively by employing the multi-tube dilution technique, as described in Standard Methods. (Anon, 1976). The methanogens were enumerated as per the method of Siebert and Hattingh (1966) . sepoid no esneultni

RESULTS AND DISCUSSION

The relative distribution of various organisms and the quantity of gas

generated in the fish and chicken wastes incorporated above and below ground level treatments are presented in Table I and Il respectively a serious and in a

The fish wastes incorporated above ground 4:1:1 treatment on an average gave the maximum gas output of 1088 cc/day over a 12 weeks period compared to 899 cc/day of chicken wastes incorporated treatment. Probably balanced proportion of carbon and nitrogen in these wastes might have stimulated the desired type of organisms resulting in maximum quantity of gas generation. The results obtained are in agreement with Mishra (1954) and Acharya (1958). In both the wastes incorporated treatments, the ones that were kept above ground in general recorded more gas output when compered to treatments kept burried in soil. Variations were observed with regard to above ground and below ground temperatures. The above ground treatments have had access to direct absorption of solar radiation and this might have enhanced the gas generation. to of bersomes from

The maximum bacterial population of 47.0 × 106/g was estimated in the fish wastes incorporated biodigested slurry specimen of above ground treatment compared to 33.3 × 106/g of the same chicken wastes incorporated treatment. The population enumerated were generally high in the above ground when compared to that of below ground enumerated being 240.0 × 105/q level

The cellulolytic activity, which is the most critical of all the activity causes the breakdown of complex raw meterials to simple soluble organic compounds. The maximum cellulolytic organisms enumerated were 14.6 and 5.6 (\times 10⁴/g) in the fish and chicken wastes incorporated treatments respectively.

The acid forming bacteria act on the various substrates added and releases volatile acids, which forms the base substrate for methanogenic activity. The maximum population of acid forming organisms (24.0 × 104/g) were enumerated in the treatments that gave the maximum gas generation. Similar results expressed by Deshpande et al (1979) lend support to the findings of the present study.

The rate of gas generation is attributable to relatively higher cell densities indicating the significant role played by methanogenic bacteria in the production of methane rich biogas. In this study, the maximum methanogenic bacteria estimated was 17.0 × 104/g in the fish wastes incorporated treatment compared to others. Thus, there is a close correlation between methanogenic population and gas production. Similar results were obtained by Rajasekaran and Nagarajan (1979) and Ranade et al (1980) bear testimony to the findings of this study.

Variations were observed in the distribution of coliforms and fecal steptococci populations, the maximum enumerated being $240.0 \times 10^5/g$ and 39.0×10^2 /g respectively in the fish wastes incorporated 4:1:1 treatment.

This study provides evidence that the fish and chicken wastes accumulating in the market if properly recycled along with cowdung and old slurry could help in generating more quantity of biogas. The same and the home

kept above ground and the other kept HAT TOOTIO REFERENCES THOSE IN DESIGNA

- ACHARYA, C. N. 1958. Preparation of fue gas and manure by anaerobic fermentatien. Organic materials, Research Series Bulletin No. 15. I. C. A. R. New Delhi. pp 10-33.
- ANONYMOUS, 1976, Standard Methods APHA AWWA., WPCF. New York.
- BANSAL, M. L., C. P. MITTAL., H. S. SONDHI and S. NEEIAKANTAN. 1977. Biogas production during anaerobic digestion of livestock excreta. Indian J. Dairy. Sci., 30: 331-40.
- CHYNOWETH, D. P., and R. A. MAH, 1977. Bacterial populations and end products during anaerobic sludge fermentation of glucose. Jour water poll. contrd. Fep. 1: 405 - 406.
- DESHPADE, P., S. SARNAIK., S. H. GODBOLE. and P. M. WAGLE. 1979. use of water hyacinth as an additive in biogas production. Curr. Sci. 48: 490-92.
- MISHRA, U. P. 1954. Production of combustible gas and manure from bullock dung and other organic materials Assoc. I.A.R.I. Thesis. I. A. R. I. New Delhi.
- RAJASEKARAN, P. and P. NAGARAJAN. 1979. Distribution of microorganisms and their influence on biogas generation in various agricultural wastes incorporated treatments. Paper presented at II All India symposium on soil Biology and Ecology, Univ. of Agir. Sci. Bangalore, Bangalore

FISH AND CHICKEN WASTES FOR BIOGAS GENERATION

RANADE, D. R., J. A. CORE. and S. M. GODBGLE, 1980, Methanegenic erganisms from fermenting slurry of the gobar gas plant. Curr Sci., 49: 395-97.

SIEBERT, M.C. and W.H.J. HATTINGH
1967. Estimation of methane producing
bacterial number by the most probable
number (MPN) techning. Water Res. 1: 13.

osi probabis ar Res. 1: 13, TABLE 1 Effect of incorporation of fish wastes on the distribution of microbial population and biogas generation.

prioducing as

of consumer of the consumer of	orien ns auer a Nage - and	(Popula	Microbial	Microbial population (Population expressed per g on even dry basis)	ren dry basis)	Acid obcieta o CB		Gas production	W. H., of metha
Treatment	Proportion (v/v)	Bacteria (x 10¢)	Acid- forming organisms (x 104)	Cellulolytic organisms (x 104)	Methano- genic bacteria (x 104)	Califorms (× 10 ⁵)	Fecal strepto-cocci (× 102)	Average Percentage quantity increas of gas produced in cc/ control day 12 weeks period	increas over control
A. Above ground			med up resource p 25 is		es traci etico es specie			un alter	SIEBEI 19
CD:OS:FW	4:1:1	47.0	24.0	14.6	17.0	240.0	39.0	1088	86.0
CD:OS:FW	4:0:1	0°6	7,0	2.0	8.0	94.0	9.0	563	S. H. slams gas
CD:0S FW	4:1:0	25.0	8.0	2.0	11.0	79.0	11.0	582	nd organ
B. Below ground								-97,	genie the
CD:0S:FW	4:1:1	27.0	11.6	4.6	12.0	141.0	23.0	791	ta yi
CD:0S.FW	4:0:1	10.6	5.3	5.3	11.0	70.0		574	o, Me
CD:0S:FW	4:1:0	18.0	7.3	7.3	5.0	63.0	es Marie	250	E. 198
CD : Cow dung	10 : SO	Old slurry	FW : F	Fish wastes	A.e. A.	o fetosanci ar n muni a femos g	er vi je	plant, d	ANADE. I GODBG! from for

TABLE 11 Effect of incorporation of chicken wastes on the distribution of microbial population and biogas generation

Propertion Bacteria Acid- Celluloytic Methano- (Colliforms Fecal quantity tage organisms ganic x 105) strepto- of gas increase organisms (X 104) (X 10	Propertion Bacteria Acid- Celluloytic Methano- (Celliforms Facal quantity of gas of ganisms (X 10°) strepto- quantity of gas (X 10°) strepto- corgonisms (X 10°) bacteria (X 10°) strepto- corgonisms (X 10°) bacteria (X 10°) in colday over 12 moduced (X 10°) in colday over 12 moduced (X 10°) strepto- corgonisms		A LODS	opulation exp	Microbial population pressed per g on over	Microbial population (Population expressed per g on over dry basis)	Sis)	tignani tignani tignani	Gas production	i uo
4:1:1 33.3 17.0 5.6 13.0 172.0 28.0 899 4:0:1 10.6 5.3 2.0 7.0 70.0 3.0 575 4:1:0 9.3 4.0 1.3 2.0 23.0 4.0 433 4:1:1 21.3 5.3 5.0 12.0 109.0 21.0 752 4:0:1 6.0 7.3 3.3 4.0 73.0 4.0 555 4:1:0 13.6 7.6 6.0 4.0 73.0 4.0 555	4:1:1 33.3 17.0 5.6 13.0 172.0 28.0 899 4:0:1 10.6 5.3 2.0 7.0 70.0 3.0 675 4:1:0 9.3 4.0 1.3 2.0 23.0 4.0 433 4:1:1 21.3 5.3 6.0 12.0 109.0 21.0 752 4:0:1 6.0 7.3 3.3 4.0 73.0 4.0 555 OS : Old slurry CW : Chieken wastes	Proportion (v/v)	Bacteria (× 106)	Acid- forming organisms (X 104)	Celluloytic organisms (X 104)	Methano- genic bacteria (X 104)	(Coliforms × 105)	ALC: THE RESERVE OF THE PARTY O	Average quantity of gas produced in cc/day over 12	Percentage increase over control
4:1:1 33.3 17.0 5.6 13.0 172.0 28.0 899 4:0:1 10.6 5.3 2.0 7.0 70.0 3.0 575 4:1:0 9.3 4.0 1.3 2.0 23.0 4.0 433 4:1:1 21.3 5.3 5.0 109.0 21.0 752 4:0:1 6.0 7.3 3.3 4.0 26.0 3.0 478 4:1:0 13.6 7.6 6.0 4.0 73.0 4.0 555	4:1:1 33.3 17.0 5.6 13.0 172.0 28.0 899 4:0:1 10.6 5.3 2.0 7.0 70.0 3.0 575 4:1:0 9.3 4.0 1,3 2.0 23.0 4.0 433 4:1:1 21.3 5.3 5.0 12.0 109.0 21.0 752 4:0:1 6.0 7.3 3.3 4.0 26.0 3.0 478 4:1:0 13.6 7.6 6.0 4.0 73.0 4.0 555				THE STATE OF THE S	to				
4:0:1 10.6 5.3 2.0 7.0 70.0 3.0 575 4:1:0 9.3 4.0 1.3 2.0 23.0 4.0 433 4:1:1 21.3 5.3 5.0 12.0 109.0 21.0 752 4:0:1 6.0 7.3 3.3 4.0 26.0 3.0 478 4:1:0 13.6 7.6 6.0 4.0 73.0 4.0 555	4:0:1 10.6 5.3 2.0 7.0 70.0 3.0 575 4:1:0 9.3 4.0 1.3 2.0 23.0 4.0 433 4:0:1 6.0 7.3 3.3 4.0 26.0 3.0 478 4:1:0 13.6 7.6 6.0 4.0 555		en en	17.0	e c		ATT WO	n taju Isataliki shir sar Tajuk		
4:1:0 9.3 4.0 1.3 2.0 23.0 4.0 433 4:1:1 21.3 5.3 5.0 109.0 21.0 752 4:0:1 6.0 7.3 3.3 4.0 26.0 3.0 478 4:1:0 13.6 7.6 6.0 4.0 555	4:1:0 9.3 4.0 1.3 2.0 23.0 4.0 433 4:1:1 21.3 5.3 5.0 12.0 109.0 21.0 752 4:0:1 6.0 7.3 3.3 4.0 26.0 3.0 478 4:1:0 13.6 7.6 6.0 4.0 555 OS : Old slurry CW : Chieken wastes		10.6	ကိ	2.0	0.50	172.0	28.0	6 A	108,1
4:1:1 21.3 5.3 5.0 12.0 109.0 21.0 752 4:0:1 6.0 7.3 3.3 4.0 26.0 3.0 478 4:1:0 13.6 7.6 6.0 4.0 75.0 4.0 555	4:0:1 21.3 5.3 5.0 12.0 109.0 21.0 752 4:0:1 6.0 7.3 3.3 4.0 26.0 3.0 478 4:1:0 13.6 7.6 6.0 4.0 555 0.0 555		6.0	4.0	1.3	2.0	23.0	, A	0 7 0 7 0 0	, A
4:1:1 21.3 5.3 5.0 12.0 109.0 21.0 752 4:0:1 6.0 7.3 3.3 4.0 26.0 3.0 478 4:1:0 13.6 7.6 6.0 4.0 555	4:1:1 21.3 5.3 5.0 12.0 109.0 21.0 752 4:0:1 6.0 7.3 3.3 4.0 26.0 3.0 478 4:1:0 13.6 7.6 6.0 4.0 73.0 4.0 555 OS : Old slurry CW : Chieken wastes						ora dus		A D	:on
4:1:1 21.3 5,3 5.0 12.0 109.0 21.0 752 4:0:1 6.0 7,3 3.3 4,0 26.0 3.0 478 4:1:0 13,6 7.6 6.0 4,0 73.0 4.0 555	4:0:1 6.0 7.3 5.3 6.0 12.0 109.0 21.0 752 4:0:1 6.0 7.3 3.3 4.0 26.0 3.0 478 4:1:0 13.6 7.6 6.0 4.0 73.0 4.0 555									
4:0:1 6.0 7.3 3.3 4.9 26.0 3.0 478 4:1:0 13.6 7.6 6.0 4.0 73.0 4.0 555	4:0:1 6.0 7.3 3.3 4.9 26.9 3.0 478 4:1:0 13.6 7.6 6.0 4.0 73.0 4.0 555 0S : Old slurry CW : Chicken wastes		21.3	6,3	5.0	12.0	109.0	21.0	752	n n
4:1:0 13.6 7.6 6.0 4.0 73.0 4.0	4:1:0 13.6 7.6 6.0 4.0 73.0 4.0 0S : Old slurry CW : Chieken wastes		6.0	7.3	3.3	4.0	26.0	A C	720	
	OS : Old slurry CW : Chieken wastes		13.6	7.6	0:0	4,0	73.0	4.0	, ro	
	OS : Old slurry CW :	And and an				AND STREET STREET, STREET STREET, STREET STREET, STREE	ta till	66		D 0