Progressive Changes in Available Nutrient Contents in the Sandy Soils and their Effect on Yield and Uptake of Nutrients in Ragi (Eleusine coracana Gaertn.)

A. KANAKA DOSS, D. RAJ² and S. LOGANATHAN³

ABSTRACT

A pot culture experiment was conducted to study the progressive variations in available nutrients in soil, yield of ragi (Eleusine coracana Gaerth.) and uptake of nutrients as affected by different carriers of nitrogen and phosphorus in the representative sandy soils of Tamil Nadu. Soils samples were collected at tillering, flowering and post harvest stages of the crop and analysed for avilable nutrients. There was rapid decrease in avilable nutrients, due to leaching. The yield and uptake of nutrients depended on the fine sand content of the soil.

INTRODUCTION

In recent times, sandy soils have been successfully cultivated in Israel and United Arab Republic, adopting methods of water conservation like sprinkler and drip irrigation systems. The potentialities of sandy soils mentioned above motivated the present study. In this study an attempt was made to evaluate the progressive changes in available nutrient status of soils, response to added fertilisers, crop performance and uptake of nutrients in representative sandy soils of Tamil Nadu.

MATERIALS AND METHODS

A pot culture experiment was conducted with Co 7 ragi as test crop in the sandy soils collected from Thiruthuraipoondi, Thiruchendur, Cuddalore a Coimbatore, the former two soils senting the coastal sand and two representing inlar ments included wer

T. Co

sphate

+ Dicalcium phosphate

erphosphate

- Dicalcium phosphate

T_s: Sodium nitrate + Superphosphate

Sodium nitrate + Dicalcium phosphate

Ts: Groundnut cake + Superphosphate

T₉: Groundnut cake + Dicalcium phosphate

^{1.} Agricultural Development Officer, State Bank of India, Pondicherry.

^{2.} Professor of Bio-chemisty, Tamil Nadu Agricultural University Coimbatore-641003.

^{3.} Instructor, Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore-641003.

The dosages of fertilisers adopted were 60 kg N/ha, 30 kg P₂O₅/ha and 30 kg K₂ O/ha. Potassium was applied to all the pots uniformly as muriate of potash. Seven kilograms of soil were taken in each pot to which calculated quantities of the fertilisers were added according to the treatments. At tillering, flowering and post harvest stages of the crop, soil samples were collected from each pot and were analysed for available nitrogen by alkaline permanganate method, available phosphorus by Olsen's method and available potassium ammonium acetate extraction followed by flame photometry. Yields of grain and straw were recorded. Grain and straw were analysed for total nitrogen, phosphorus and potassium. The triple acid extract of the plant samples was taken and phosphorus and potassium were estimated from the extract adopting colorimetry and flame photometry respectively.

RESULTS AND DISCUSSION

The data on analyses of soils are given in Tables 1 and 2. The yield data and uptate values are furnished in Table 3.

Available nitrogen: A marked progressive decrease in available nitrogen content was recorded after the 30th day synchronising with the tillering stage. The general trend of variation of available nitrogen with time was a steep decrease of the nutrient upto about the 60th day coinciding with the flowering stage and less marked changes thereafter. A comparison of the 30th day and the

TABLE 1. Basic analytical data of the soils

TABLE	ALCO SECURIOR ESTA		EL MANAGEMENT AND	AND DESCRIPTION OF THE PERSON
Soil proper-	poondi soil	Thiruchendur soil	Cuddalore	Coimbatore
22				
A. Mechanical Composition (Percentage)			OT SER	
1. Coarse sand	2.6	39.0	34.2	54.2
2. Fine sand	88.4	59.2	51.8	39.8
3. Silt+Clay+ loss on solu- tion	9.0	1.8	14.0	6.0
B. Total Nutri- ents (Percent- age)				
1. Nitrogen (N)	0.03	0.02	0.02	0.02
2. Phosphorus (P ₂ O ₅)	0.012		0.056	0.036
3. Potassium $(K_2 O)$	0.11	0.06	0.09	0.07
C. Available Nutrients (kg/ha)		E6241		
1. Nitrogen (N)	148	106	131	134
2. Phosphorus (P ₂ O ₅)	2.0	2.5	4.0	4.0
3. Potassium (K ₂ O)	160	310	107	87
D. Other propre- ties				
1. Organic car-		5 0.01	5 0.015	0.057
bon (per cent) 0.01 7.3	6.0	9.0	8.2
3. E. C. (m.mhos		4.5	0.2	0.2
4. CEC (me		1.7	3.1	2.5
				NAME AND ADDRESS OF THE OWNER, AND

60th day indicated that the decrease in the nutrient content was 50 per cent reflecting a large magnitude of initial

TABLE 2. Available nutrients in soils during different stages of crop growth (kg/ha)

Treatment	Avai	Available nitrogen/ days			Available phosphorus $(P_2 O_5)/days$			Available potassium (K ₂ O)/days		
	30	60	80	30	60	80	30	60	80	
Thiruthurai- poondi Soil					salcula dha ea	vnich o		ech p		
T ₁	241	154	138	15	4.	1	82	70	55	
T_2	255	157	45	25	4	4	80	75	45	
T ₃	269	148	120	50	6	5	82	80	52	
T ₄	232	157	123	24	4	3	82	67	70	
. T ₅	241	115	173	32	2	1	92	85	95	
T_6	229	188	148	14	10.6	2	67	70	75	
T ₇	238	140	123	26	5	2	115	82	112	
0.0 T80.0	249	132	146	22	7	4	77	80	100	
T ₉	232	134	137	28	6	1 1	85	70	90	
Tiruchendur Soll										
poteTi nittes	241	134	160	36	4	2	92	97	102	
T_2	255	134	129	15	2	2	100	95	157	
T ₃	246	132	112	14	3	4	22 77	110	75	
0.4 T4 0.4	218	140	120	18	1	2	80	110	22	
T ₅	230	120	120	22	3	7	90	80	102	
T ₆	258	134	151	22	3	5	67	65	117	
T ₇	260	126	145	22	2	6	92	105	82	
T ₈	263	118	129	18	2	A 6	97	132	87	
T ₉	428	126	106	38	1	4	82	67	80	

			TABLE 2	(Contd)		(tbg/g)			
Cuddalore	soil								
T ₁	252	154	202	14	1	14	67	75	162
· T ₂	224	143	157	28	2	6.99	60	67	130
T_3	225	140	176	30	3	£6.04	65	77	87
T.4	255	143	168	20	2	4	67	80	175
52 ₅ T	269	154	148	56	1	16	57	65	165
T ₆	286	132	185	25	1	1015	67	70	170
T ₇	232	185	87	88	3	12	65	80	162
T ₈	202	154	70	24	4	17	97	105	182
T ₉	258	154	109	50	3	4	77	80	90
Coimbatore	e soil			doggent.					
T ₁	252	156	56	36	1	8052	62	67	145
T ₂	202	112	134	40	1	20,2	60	55	90
T ₃	364	120	48	52	2	2	60	65	147
T ₄	280	132	34	70	2	1 16	57	67	107
 T_5	291	132	50	80	1	1	55	67	122
T ₆	353	140	56	46	4	se de	67	77	117
T	414	168	45	92	2	08.2	57	67	150
T ₈	280	118	39	38	2	2	55	75	170
T ₉ e	272	134	151	40	2	2	57	62	210

JIOZ YOM KANAKA DOSS et al. TUBIRTUN

TABLE 3. Yield and uptake of nutrients

	Yield	ield (g/pot) Uptake in grain (mg/pot)				Uptak	Uptake in straw (mg/pot)			
Treatments	Grain	Straw	N	P ₂ O ₅	K ₂ O	N	Hoe P ₂ O ₅ bbu	K ₂ O		
hiruthuraipod	ndi soii		1	CAC	N 2 P		(A) (D) (AA) (S			
T ₁	5.78	5.99	213	24	10	68	7	59		
T2 081	6.79	7.80	247	31	14 847	131	2	94		
Ta va	8.21	10.93	276	39	17 011	153	4	98		
Т.	13.77	12.53	347	66	30	210	31	115		
T _{5.}	12.41	9.36	625	60	25	157	18	88		
5 165 aT	9.14	10.11	307	41	18	170	52	91		
T7 071 0	8.64	8.61	387	48	16 281	96	18	77		
T ₈	6.70	8.25	243	33	15	116	18	73		
T ₉	6,38	7.09	357	29	14	99	16	62		
Tiruchendur so		4 00 8	70	1001	154 4	21	2	16		
Τ,	2.28	1.88 3.77	156	19	9	53	15	34		
T ₂ .	4.29		102	12	6	39	oimbatore soi	25		
T _{3.}	3.03	2.80	331	52	22	119	60	77		
145 T	10.75	8.50	123	11	6 881	52	6	25		
T ₅ dAl	2.94	3.08	268	24	12 911	6300	8	49		
T _{6:} 00	6.37	5.59		19	10	72	13	46		
T ₇ TAT	5.39	5.15	196	12	120 01	47	21	36		
T ₈ .	4.12	4.24	150	15	6 281	80	24	64		
T ₉₄	4.44	7.16	633	50	132	toc				
Cuddalore so	55 67									
T ₂ VFT	4.24	2.98	589	13	6 041	51	15 T	26		
	10.46	9.39	408	28	24 801	131	23	84		
T ₃	10.19	7.91	357	32	23	111	17	75		
T ₄	9.79	6.92	96	34	23	78	29	62		
	4.70	4.13	197	931	11 151	92	9	35		
T ₆	9.36	8.25	394	31	22	139	26	70		
T ₇	6.62	6.01	278	22	15	84	20	52		
T ₈ .	8.48	6.98	285	31	23	78	38	60		
T ₉	8.16	8,15	205	30	22	114	37	68		
On Imphators o	o il									
Coimbatore s	4.19	3.28	235	16	8	46	11	28		
T ₂	5.31	4.65	268	20	12	52	16	3		
T ₃	5.37	4.38	211	20	13	61	14	3		
T ₄	6.00	4.92	286	19	13	69	12	4:		
T ₅	9,91	8.13	561	39	20	91	10	7		
T ₆	5.88	4.93	165	21	10	69	17	4		
T ₇	3.44	3.86	116	12	7	65	10	3		
T ₈ .	5.76	4.75	258	18	10	67	15	4		
T ₉	5.60	4.39	188		11	37	7	3		

loss of nitrogen. Available nitrogen and phosphorus at the 30th day were closely related (r = 0 709***) suggesting the regularity of variation of these two nutrients. As such split applications, if adopted, would mitigate such losses and conserve available nitrogen to a considerable extent.

Available phosphorus: Considering the effect of soils. Coimbatore and Cuddalore soils were on par and superior to Thiruthuraipoondi and Thiruchendur soils in the matter of availability of phosphorus. There was a sharp decrease of available phosphorus content from tillering to flowering stage after which there was no change. The values for the latter two periods were very low, indicating that an appreciable loss of available phosphorus occurs within a very short time. While it is possible that a part of the loss would have been due to removal by the crop, the major part of the loss is attributable to leaching losses. Neller's (1947) observation of such losses in Florida sandy soils corroborated this assump-Split application of phosphatic fertilisers would cut down the losses and make the application more effective.

Intial available phosphorus of Thiruthuraipoondi and Thiruchendur soils was very similar (2.0 to 2.5 kg P_2 O_b/ha) and might account for the similarity in the corresponding values for the 30th day. But the variability of these values for Cuddalore and Coimbatore soils inspite

of the fact that their initial available phosphorus content was identical, was difficult to explain and requires further elucidation.

Available potassium: The trend of progressive changes of this constituent with time was contrary to that observed for available nitrogen and phosphorus. While for nitrogen and marked phosphorus there was a decrease at the beginning and stabilisation in later stages, for available potassium there was no change in the content of this nutrient at the 30th and the 60th day but a slight increase was observed thereafter. Such an increase at the last stage could not be readily accounted for.

Yield of grain and straw: Considering grain yield, statistical significance was registered by soils and treatments. In the case of soils, Thiruthuraipoondi and Cuddalore soils were superior to the remaining ones. Considering the treatments, urea with superphophate was observed to be superior to ammonium sulphate and groundnut cake combinations with super and decalcium phosphate. The trend for straw yield was similar to those for grain yield, considering the effects of soils.

Uptake of nutrients: Uptake values for nitrogen, phosphorus and potassium were found to be closely correlated. The uptake values for these elements between grain and straw were also closely related. Likewise, Chandra-