Madras ugric. J. 61 (5): 97-101, May, 1974

# Efficacy of Inorganics and Organics to Potato

BY

K. K. MATHAN<sup>1</sup>, S. SAMBOORNARAMAN<sup>2</sup> and K. WOLPERS<sup>3</sup>

#### **ABSTRACT**

Trials were conducted to compare the inorganic and organic sources of both nitrogenous and phosphotic fertilizers. Similar performance of the inorganic sources of the nutrients under the present soil condition for short duration crops like potatoes, is observed. When it is combined with application of bulky organic manures, the performance seems to be better.

#### INTRODUCTION

Farmers in the Nilgiris, apply, in general, the Nanjanad mixture to potato crop. Fifty per cent of N and P are in the form of groundnut cake meal and steamed bone meal, respectively. These organic forms of fertilizers are very costly when the price is compared with inorganic forms per unit nutrient value. Further, groundnut cake meal can be used as a cattle feed and steamed bone meal is not available in plenty. The nutrient content in the organic fertilizers is not constant. It varies depending on many factors. In addition, both N and P from the above sources are not released in sufficient quantities to short duration crops like potatoes.

Taking into consideration the acidic nature and other physical and chemical properties of the soils of Nilgiris, organic form of P or N is to be theoretically expected to give a very good response in terms of yield, in addition to its beneficial effects in building both the physical and chemical properties of the soil. Therefore, this study was undertaken to compare the merits of both the organic and inorganic forms of N and P.

# MATERIALS AND METHODS

The trial was laid out at the Agricultural Research Station, Nanjanad during main season, 1968 with 8 main treatments and 2 sub-treatments in a split plot design with 4 replications.

The details are furnished below:

## Main treatments:

- Control
- N as ammonium sulphate and P<sub>2</sub>O<sub>5</sub> as Thomas phosphate.

<sup>1.</sup> and 2. Assistant Agricultural Chemists 3. Soil Chemist and Project Officer (German) Indo-German Nilgiris Development Project, Octacamund.

- N and P<sub>2</sub>O<sub>5</sub> as groundnut cake and Thomas phosphate.
- N and P<sub>2</sub>O<sub>5</sub> as ammonium sulphate and steamed bone meal.
- N and P<sub>2</sub>O<sub>5</sub> as groundnut cake and steamed bone meal.
- N as groundnut cake (50 per cent N) and ammonium sulphate (50 per cent N), P<sub>2</sub>O<sub>5</sub> as steamed bone meal (50 per cent N) and Thomas phosphate (50 per cent P<sub>2</sub>O<sub>5</sub>).
- N as groundnut cake (50 per cent N) and ammonium sulphate (50 per cent N) and P<sub>2</sub>O<sub>5</sub> as Thomas phosphate.

N as ammonium sulphate and P<sub>2</sub>O<sub>5</sub>
as steamed bone meal (50 per cent
P<sub>2</sub>O<sub>5</sub>) and Thomas phosphate (50
per cent P<sub>2</sub>O<sub>5</sub>).

## Sub-treatments:

- No manure
- 2000 Kg/ha manure.

N, P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O were given as basal dressing at the rate of 6, 24 and 6 kg/da respectively. The presence of N in steamed bone meal and the P<sub>2</sub>O<sub>5</sub> in groundnut cake have also been taken into account. Wherever Thomas phosphate was a treatment, ammonium sulphate was applied 10 days after

TABLE 1. Yield and analytical data of main season 1968

| Yield |                             | Soil P | .4                          | Plant P  |                             | Plant N |                             |
|-------|-----------------------------|--------|-----------------------------|----------|-----------------------------|---------|-----------------------------|
| Ω/da  | Per cent<br>over<br>control | in ppm | Fer cent<br>over<br>control | Per cent | Per cent<br>over<br>control | Percent | Per cent<br>over<br>control |
|       | * :                         | ,      |                             |          |                             |         |                             |
| 19.9  | 100                         | 57.5   | 100                         | 0.360    | 100                         | 3.74    | 100                         |
| 25.2  | 127                         | 77.5   | 135                         | 0.410    | 114                         | 4.20    | 112                         |
| 23.5  | 118                         | 72.5   | 126                         | 0,420    | 117                         | 4.06    | 109                         |
| 25,0  | 126                         | 62,5 . | 109                         | 0,325    | 90                          | 4.23    | 113                         |
| 22.3  | 112                         | 62.5   | 109                         | 0,325    | 90                          | 4.06    | 102                         |
| 19.4  | 97                          | 72.5   | 126                         | 0.415    | 115                         | 3.90    | 104                         |
| 21.2  | 107                         | 77.5   | 135                         | 0.460    | 128                         | 3,85    | 103                         |
| 22.9  | 115                         | 72.5   | 126                         | 0.420    | 117                         | 4.23    | 113                         |

TABLE 2. Yield and -analytical data of autumn season 1368

| Main treatments |                             |        |                             |          |                             |          |                             |  |  |
|-----------------|-----------------------------|--------|-----------------------------|----------|-----------------------------|----------|-----------------------------|--|--|
| Yield           |                             | Soil P |                             | Plant P  |                             | Plant N  |                             |  |  |
| Q/da            | Per cent<br>over<br>control | in ppm | Per cent<br>over<br>control | Per cent | Per cent<br>over<br>control | Per cent | Per cent<br>over<br>control |  |  |
|                 |                             |        | * .                         | L +      |                             | +        |                             |  |  |
| 10.2            | 100                         | 62.5   | 100                         | 0.415    | 100                         | 3,81     | 100                         |  |  |
| 12,2            | 120                         | 72.5   | 116                         | 0.470    | 113                         | 4.28     | 112                         |  |  |
| 12,0            | 118                         | 72.5   | 116                         | 0.415    | 100                         | 4.08     | 107                         |  |  |
| 12.4            | 124                         | 67.5   | 108                         | 0.405    | 98                          | 4.23     | 111                         |  |  |
| 11.1            | 109                         | 67,5   | 108                         | ò.380    | 92                          | 4.08     | 107                         |  |  |
| 11,5            | 113                         | 67.5   | 108                         | 0.430    | 104                         | 4.23     | 111                         |  |  |
| 11,9            | 117                         | 72.5   | 116                         | 0.435    | 105                         | 3.88     | 102                         |  |  |
| 11.4            | 112                         | 67,5   | 108                         | 0 415    | 100                         | 4.23     | 107                         |  |  |

planting or soon after sprouting whichever is earlier to avoid loss of ammoniacal nitrogen due to the presence of free calcium oxide in Thomas phosphate. Top dressing of 2 Kg/da as ammonium sulphate was applied to all the plots during the first hoeing and weeding.

The trial has been repeated during autumn 1968. The plots received N, P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O at the rate of 9, 16 and 3 Kg/da respectively, as basal dressing only. Soil and plant samples were collected from the plots on the 75th day after planting and total P and N were estimated.

# RESULTS AND DISCUSSION

The yield data are furnished in Table 1. Maximum yield was obtained in plots where both N and P have been supplied in inorganic forms or in plots which received the entire N as ammonium sulphate and P as steamed bone meal. Minimum yield response was recorded in plots which received the entire N and P as either organic fertilizers or as in the Nanjanad Mixture (treatment No. 6). This trend was observed during autumn 1968 also. During both the seasons manured plots recorded better yields than control plots. The yield differences

#### MATHAN et al.

TABLE 3. Economics of the trials

| , No. | ÷.                           | Main season 1968            |                                       | vs                      | n bed                           | Autumn Season 1968                             |                                  |
|-------|------------------------------|-----------------------------|---------------------------------------|-------------------------|---------------------------------|------------------------------------------------|----------------------------------|
|       | Input per da.<br>in rupees * | Receipt in rupees per da ** | Additional income ver control per da. | Net profit<br>control 1 | Receipt in<br>rupees per<br>da. | Additional income over control per da          | Net profi<br>if contro<br>is 100 |
|       |                              |                             |                                       |                         |                                 |                                                | 1                                |
| 1     | 0,00                         | 1157,28                     | -                                     | 100                     | 639,83                          | 940<br>1 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100                              |
| 2     | 65.90                        | 1516.21                     | 293,03                                | 125                     | 1180.11                         | 474,38                                         | 174                              |
| 3     | 89,04                        | 1397.74                     | 151.42                                | 113                     | 722.10                          | -6.77                                          | 99                               |
| 4     | 62.40                        | 1487,20                     | 267.52                                | 123                     | 755.26                          | 53 03                                          | 108                              |
| 5     | 66,94                        | 1393,37                     | 69.15                                 | 115                     | 669.08                          | -44.69                                         | 94                               |
| 6     | 71.66                        | 1196.14                     | -32.80                                | 97                      | 702,67                          | -8.82                                          | 99                               |
| 7     | 66.75                        | 1241.05                     | 17,02                                 | 102                     | 637,08                          | - 9.50                                         | 99                               |
| 8     | 64,69                        | 1360.61                     | 138.64                                | 112                     | 704,16                          | -0.36                                          | 100                              |
|       |                              | 4                           |                                       |                         |                                 |                                                | 54.5                             |

<sup>\*</sup> Other cost of inputs being equal to all the treatments, extra input cost on nitrogenous and phosphatic fertifizers alone have been calculated. (Price as on August, 1968).

ween treatments were however not statistically significant indicating the suitability of the other combinations of fertilizers also in place of Nanjanad mixture. Experiments were carried out at the Agricultural Research Station, Nanjanad to test the efficacy of Farm Mixture with other mixtures supplying an equal amount or half as much of phosphoric acid either as super or as bone meal (Anonymous,

1954). Mixture with super as the sole carrier of phosphoric acid behaved just like the Nanjanad mixture.

Whichever plots received the entire phosphorus as inorganic fertilizer recorded the maximum available soil phosphorus (T. No. 2, 3 and 7). P content in the plant samples also indicated the same trend. Nitrogen content, of the plants showed that

<sup>\*\*</sup> Price per quintal of the produce at Rs. 75.00 for seeds, Rs. 60.00 for Big and small chats and Rs. 40 for other grades.

<sup>&#</sup>x27;da' denotes decare (1/10 hectare)

whenever N was supplied as inorganic fertilizers, the potato crop is able to absorb the maximum (T. No. 2, 4 and 3). When both N and P are supplied as inorganic fertilizers, the uptake of both N and P are found to be the naximum from those plots.

A new soil phosphorus level has been built up in the farm soils where he experiments were conducted. Juder such conditions inorganic forms of P and N gave good responses for crops like hort duration annual Whenever, the source of otatoes. nutrient upply is either substituted or supplemented with organic forms, it is of no added advantage probably due to the low rate of mineralisation of organic forms.

On the other hand the inorganic sources of nutrients reduced the cost of input considerably, resulting in 25 per cent more profit by the use of inorganic fertilizers. Where one of the inorganic sources of fertilizers are partially or completely substituted by the organic forms, the increase is only up to 15 per cent (Table 3).

During the autumn season, the same trend is observed but the profit obtained by the use of inorganic fertilizers is even 74 per cent over control. Whenever the entire N was in the inorganic form the performance in yield was either second to the treatment where both N and P were in inorganic forms, or the loss was at the minimum. This stresses the need to supply at least N in the inorganic form.

# **ACKNOWLEDGEMENT**

The authors thank the Project Management of the Indo - German Nilgiris Development Project, for the valuable guidance in conducting the trials. Thanks are also due to the Superintendent and staff of the Agricultural Research Station, Nanjanad for the active cooperation.

#### REFERENCE

ANONYMOUS, 1954. Memoirs of the Department of Agriculture, Madras. P. 829.



