https://doi.org/10.29321/MAJ.10.A01453

ook oo R

B

o

Farming will never be a success unless the farmer x
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ON THE MATHEMATICAL PROBAELE ERROR AS APPLICABLE
TO FIELD EXPERIMENTS IN AGRICULTURE *

BY

Pror. M. VAIDVANATHAN. nM.A., L.T.,
Honorary Reader, University of Madras

i, Apologia

These lectures which the author had the honour of delivering under the
auspices of the University are the outcome of an attempt to place before the
Agricultural experimentalist the mathematical limitations that govern his
‘significance, and to explain to him in broad outline the skeleton of the
statistical theory that forms the basis of judging inter-varietal differences
or the differences between different treatments. 7To a pure mathematician, the
distributions of the errors of statistics and their analytical properties {orm
the crux of the problem, while to an experimentalist the applications of the
theory with all its implications bring in not only inferences but suggest new
problems and new spheres of work connected with his experimentations. For
in fact in no other science are theory aud practice so combined, so aliied and
so interdependent that most of the problems connected with agricuitural
experimentations have not been correctly diagnosed for want of sufficient
progress in statistical ideas and statistical theory, Though indeed a high
technical knowledge is necessary to study the peculiarities of the soil, to
suggesl ways and means for the economic use of the fertilisers, to test the
different varieties in respect of the yield and to evolve strains out of them to
produce the greatest ecffect, though these and other investigations are the

} Hoporary Readership University Leclures for 1929-30 delivered by (he author al
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province and the domain of the agricullural scientist, there is’ lndeecl the
imperative need for the brains of a statistician in that the scientist’s | ﬁgumﬁ
require a thorough sorting, scrutiny, and analysis which wcu_kl : Jead  to a
scientific interp’retatiﬁn and inference. The natire of plot experimentation. is
such that not only at the final stages of the enguiry where the statistician has
to interprel the results by a study of the different {ypes of variations. that are,
possible in the yields, but also even at the early stages of the field-trials where
there should be a preliminary survey of how best the plots couid be. arrangef[
lo minimise the causes of the errors which hamper the nature of the enquiry,
the need for a stalistical technique is obviously necessary and even imperative.

But mere statistical considerations divorced of the practical needs-and simple
methods of cultivation become only of academic interest, and h&re the
co-operation of the experimentalist and the scientific statistician is more ‘and
more acutely felt.

ii. The basis of the scheme of plot experimentation
(a) General ideas

The Agricultural Research scholar is confronted with the three dgencies,
the soil, the climale and the plant. Whatever experiments are performed
whether with different varieties or with different treatments, the soil and the
climate are permanent factors whose mﬂuences in the final results cannot be
over-estimated. Unless an experiment is repeated on the same soil for a
number of vears it is not possible to fix up a definite significance between
variety and variety or between one manure and another. The difference between
one plot and another however close they may be is so strikinglv complicated,
and the effects of the weather in the matter of cultivation in the same year or
different years are so emphatically different that any experiment, if it should
be successful, should be performed under conditions which require a préliminary
study and a careful scrutiny. -Next, the -methods of cultivation are all
important in the deduction of any inference with regard to the exper:mentatmns
High statistical mgmﬁc:mca depends. upon a most careful sowing and above all
upon the spacing variations of the different kinds of crops. The special
effects of varieties form themselves a' separate statistical stiidy. Thus, to
judge of differences in any agricultural experiment, a statistician has' to. study
the effects of three factors—climate, soil and plant—with the due recognition
of whether the experimentation has been conducted most carefuily, consistent
with the environment and the conditions of the soil.

(&) Different types of variation

Thus the technique of plot experimentation is a complicated process
involving as it does a study or a simultaneous. study with respect to the
different plots of the differences between manures, between several varicties
and between different methods of cultivation. The modern concept of
statistics is that it is ‘a science of the study of differences and nowhere either
‘in Biology; Sociology or Economics has this concept been so much exemplified
and appiied as in this art of field-experimentation. Hence the methiod of the
arrangentent. of the plots to bring out the differences between the several
types of factors that produce the variation in them -is-all important in any
scheme of experimentation. For a statistician to draw any conclusions each
experiment has lo be replicated and the necessity for the repetition of
experiments as often as the homogeneity of the soil would allow cannot be
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nveremphasmaﬂ The modern methods of replication of expenmeuts in a
limited area constitute a notable advance in plot-technique and have given a
statistical import to Lhe very arrangement of the plots on which the external
agencies have to be tried. But the number of experiments or replications
possible is by the very nature of the expenm-:—mtatmn obviously limited ancl a
statistician accustomed to exhaustive figures as in other economic enquiries
has to adopt a different theorelical attitude and a different angle of vision to
the limited sample of experiments under examination. ‘The statistical
necessity therefore demands that with a limited number of 4, 5, or even 10
trials for each variety or manure, the figures must not only be accurate and
reliable but must supply data and detaiis concerning all influences at work.
What are those influences? Now with small-scale trials where plots of
very small sizes are under experimentation such as to bring out the differences
of hybridisation, though the soil differences between plot and plot close
to each other may not be appreciable, yet in dealing with long strips of
several families of plants to judge of their individual characters, the plot
variation is a factor that cannot be easily ignored. Even more is the case of
the Field-scale trials, where plots of large areas arc brought under cultivation
under several varieties. Here the difference between one field and another
is even more striking and any judgment of the discrepancy of the vyields of
the several varieties cannot but recognize the innate fertility of the soil which
produces sometiines differences out of ‘proportion to the differences in treatment
or the efficacies of varieties. Thus an examination of the influences at work in’
the yields of the different varieties brings out #ree distinct classes of variations
occurring ina series of plot-trials with replications of the same variety. Firstly,
what might be called Accidental Errors® which are inevitable in any statistics
arises. this way, that however much the plots might be homogeneous and
alike and however identical might be the treatments of manuring or varieties,
the accidental variations such as unequal levelling, unequal channel supply
and  destruction by insects or spasmodic diseases are bound to exist between
plot and plot, and assume some significance particularly in dealing with plots
of very small size. Though in field-scale trials such accidental differences
may be taken to be consfant from field to field, in small-sized plots these
accidental wvariations require a study as they would affect the yields in an
appreciable way. But with a careful supervision and control of such factors
as would bring in these variations the accidental error could be considerably
minimiged. The second class of errors which we shall call Systematic IFariation
arises in two ways and in two different and emphatic directions. Firstly, the
influences of the soil referred to already produce what is known as the
Fertility Gradien! as we pass from plot to plot. If we could analyse the
innate fertility of the successive plois as .opposed to the effects of the new
treatments, it is found that the fertility varies in a systematic manner irom
point to point. To a mathematician such an analysis would bring out the
form of the curve representing the change. So long as this curve is indepen-
dent of the vields of the plots as the result of the experimentation it wonld be
well if such a curve which we shall call the Normal Fertility Curve ® for the
entire field is settled once for all before the other types of variation in the
individual plots are studied. If particularly the experimeniation could be
continued in the same set of plots {or different vears the study of this earve
which could T:e based upon the obetervalions for years would considerably
facilitate further studies regarding the differential efiects of the several

! In the rest of the paper, error and zarialion ore used jo (he identical sense,
2 T'his term s borrowed from an article in Yhe Apeiendtural Journal of India, Vol XX,
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varietics or treatments. The other type of the systematic wiﬁﬁ&ﬁ"‘ié the
one due to the treatments themselves. The variations that oceur from plot.
to plot as the effect of different manures in testing different varietics or-as
the effect of the same manure in producing varietal ‘differences, have- ﬂma to
be separated from the type of the systematic changes that “are due to the
fertility gradient. The third class of crrorsis what may- be called Randon:
Frrors which arise from the inaccuracies due ‘to measurements—either
throngh instruments or the personal eccentricities of the &xp&runentahst.
This class of errors is inevitable and however careful one may be, unLnr:wn.'
causes operate in producing statistical inaccuracies in the measurements of the
*;uccesqwe plats, To a btallr;tlman, this type of errors is attributable to

“ chance ' and the problem is how far chance operates in produocing dxffgrences
between t11+:: true value and the observed value of any quantity under measure-
ment. It is here that the statistical theory is showing fresh phases and new
developments, and as we shall see hlm clearer ideas of the statistical
limitations of the particular experfinentations are necessary to judge of the
difference between any two values that may arise by chance. Thus the vield
of a plot under a particular variety is a concourse of these thiee different
types of errors affecting the intrinsic yield due to the variety alone. Statistical
procedure in an examination of the differential effects thus resolves into a
study of these different types of errors and of the significance that has to be
attached to the differences between them.

(¢) The randomness of the plot arrangement

This analysis of variations leads to the question how hést we could
arrange the plots to get at the greatest benefit out of the experimentation,
The accidental errors being supposed constant, the first type of the svstematic
variation must be brought to a minimum which as already explained is due
entirely to the differences between plot and plot owing to the fertility gradient
of the field and not owing to any external agencies. Thus any arrangement
must be coneceived with a view to reduce this class of errors which is entirely
due to circumstances not within our control. It is obwvions that'one method
of securing this aim is to arrange the plots af random with respect to the
several varieties or treatments and their replications so.that the differences
in fertility between plot and plot may not contribute to the differences between
the treatments or varieties. ' In the case of the small sized plots the best way
of securing the randommness is to get cards bearing the names of varieties and
shuffle them freely so that the replications may not occur in any preconceived
manner. Thus if we are testing 5 varieties in- 20 plots, so that each variety
recurs four times, we may have twenty cards wilth the .names of varieties
written down and shuffle the twenty cards and preduce them i in any random
order, such as:

ADEBBACDABACEBEDCDCEE

If it should be possible to conduct experiments for several years in the
same set of plots this arrangement could be altered continuously year to year
to produce the desired effect. Mathematically this sort of chance randomness
may be produced in a number of ways, we could either shuffle cards or take
the last digits of a set of values from the logarithmic tables or produce a set
of fizures where the. systematic variations have no place. But' it must be
recognmﬂﬂ that any random arrangement with respect to a number of varieties

1 The Principles and Practice of Yield trials by Engledow :_:tnr] Yrule, pp. E?-ES,
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is not always conveniént from the point of view of cultivation and may even lead
to mistakes which cannot be easily repaired. The simplicity of the arrange-
ment combined with the randomness are features that must be borne in mind
in scheming the plot-trials. But when dealing with plots of large sizes covering
fairly huge blocks, even this random arrangement cannot reduce the effects of
the fertility gradient and the only course open is to recognise the differences
between the blocks but to secure randomness among the varieties in the
individual blocks themselves. We shall be facing then two types of the
fertility gradient, that due to the differences between the blocks and the one
due to the plots themselves in the same block. Later on we shall be
discussing methods of dnalysing the variances due to the several factors that
cause the variation, but anyhow our aim must be to reduce these variances
due to the soil to make the plot trials really effective and productive of the
real significance. The following is an arrangement by which the uniformity
between varieties could be secured by this process, where if ranks be given to
them in the several blocks the sum total of the ranks of each variety is the
game. Thus with five varieties and four blocks an arrangement like the
following secures to each variety positions in the blocks whose sum is the
smume, and secures an even balancing to the several varieties in the blocks.

123435 1 2345 12345 12345
ABCDE EDCBA ABCDE EDCBA

where A, B, C, D, E represent different varieties and the sum of the ranks of
each variety equals 12. By this method we have {o a certain extent eliminated
the differences between plots in the same block but still the differences
between the blocks themselves remain, As each block has its own fertility
oradient and as the significance of varietal differences cannot but recognise
the differences between the blocks, still the block-variations can be reduced by
an extended method of the above scheme of ‘balancing.” Thus with five
varieties, instead of having four blocks if we could have ffze so that each
block has all the five varieties grown on it, then not only could we ‘balancz’
the positions of the varieties but also we could ‘ equalise’ their positions as in
the following scheme:

123405 123405 1 2345 12345 123475
ABCDE BAECD DEABC ECDAB CDBEA
A, for example, occupies all the five positions in the several blocks so also the
other +varieties: so that by such an arrangement of ‘balancing’ and
‘equalising ' the plots and the blocks display more or less the same fertility
differences. Thus whatever arrangement could be conceived of to suit the
facilities “of cultivation and environment, the conditions necessary to meet {he
soil inequality between plot and plot in any expcrimentation cannot be
overlooked. :

iii. Mathematical freatment of the different types of variations
(a) Systematic Variation

Whether we test different varieties or whether we test different treatments
with respect to the same variety the systematic variation {rom plot to plot
does . require a mathematical understanding and study. If indeed we could
have a fairly appreciable number of plots nnder trial, covering a fairly large
area, then the study of the systematic variation reduces into an examination
of the best curve thatl could fit in with the given data. But where there are
only a few plots under examination the curve that conld pass through a few

2
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values only cannot be relied upon to indicale the sysl.mnatm changes., Avhow
the idea of passing th-:: hest curve ihwugh a given set of ?alue'; cannot, ba
lightly brushed aside, as its applications in an examination of & large serics of
trials &m mﬂr:eﬂ of very hlp:h Htatl‘iiif..‘.a] lmpartance The meﬂmd of curye-
fitting is uqu-ﬂly knuwn as Graduqtmn or ' Smoothing,’ and. it consists’ of
two distinet 1*-.13eLts. one Securing a Su.'ltdb]ﬂ smoath curve whicl syould. l:-l‘.".’l.nﬂ‘il"ﬁ ull
roughness in the data and thus secure an apparent perfection to the given set
af observations influenced by the other types of errors as well ; and the other
being that not only should we obtain any .mwaﬁi curve but e one which wonld
pr oduce the greatest agreement io Lhe given data, The curve that wau]d
satisfy both these cnndltmns is the one we seek for in gra:.]uatmg & given set
of values, Thus the process of G;aduatmn secures the wast ﬁ:oﬁaﬁe’c values of
a series of observations influenced by syﬁlemat_m changcs (as we nb&&we in the
plc-bfcnﬂlty due to the hptemgenmty of the soil). I\Ic-w with reeard. to the
mathematical methods of gmdnatmn. they are indeed too full, and the
particular method to be adopted depends upon the nature of the enguiry on
hand., An actuary, for emampla, uses what is Lnown as ‘the . summation’
formula "' and his literature is- full of it. The summation fnrmula is baaed
npon this eﬂncept-—-ﬂmt of a given set of figures each ﬁgure mﬂuenf:es

the neighbouring ones am:dental]y as it frequenily bappens in the. age
distribution of a population {where, e.g., a man aged 39 gives' his age
1o be 40). Here the best method of Graduation must be the one which
combines the fizures so that when differences above a certain order are
neglected the original fimction is reproduced. . It is obvious. that this method
is not suited to a series of plot-irials, for any single observation cannot be
supposed to .affect any other observed result, and each figure is taken to he
the most reliable. The following is a useful method * which we have employed
in gradualing 25 p]ut-figums (Vide Table I). Assuming a curve of the second
degree y=a~bx+cx? to pass through the twenty-five values e seek the best
values of a, & and ¢ by assaming that the moments * of 0, 1, 2 order of the
given set and the graduated set are equal. Such an assumption is tantamount
to the geometrical significance that with respect to the given curve® and the
assumed curve (in 1his case the second degree curve) their areas, their centres
of gravity and their moments of inertin are identical. If we could think
of a higher degree curve involving greater number of parameters, w e have to
mke h:gher moments and L-Dl'ﬂpl'lt& a5 many moments.as there are parameters,
Eut it is not advisabie Lo increase the degree of the poi:mnmm] though
'EhEDfﬂtlmnj" it is possible—for with (z+1) constants we can fit in a poly-
nomial of the nth degree—, because to that extent the acciracy of the law
of variation is sacrificed, Hence we could couwemenﬂy stop at the second
or the third degree. The frst aspect of graduation is now sausﬁud in virtne
of which we have secured a smooth curve of a pﬂ]}rnmma] 5 But to 1Jm{1ﬂce
greater agreement we can make anocther assumption that a very sma][
quantity € can be found such that the difference between the observed and
this intermediary value 7 (a)=(a+déx+4¢cx”) is of the form € f' (2)° following

1 C. F. Whittaker and Robinson, Celenlus of Observalions, pp. 288-291,
* The method is explained in full in Calenlns of Gﬁmrwrrmm (Vide Supra) pp. 305-315,

3 The Area of the curve is the one bounded by the eqrve, the X axis, and the extreme
urﬂmates '

: Mument of the #th nrﬂer =ally ) =y

* The form of the curve may sugges: uther Amlytiml types which are also necessarily
. smooth.
O 41 (2) is the [irst differentiu]l coefficient of £ (1),
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the expansion of f (x+€) by the Taylor's Theorem. It only remains to
choose € and we can take a series of small values for it, -001, +01 and so on
and test whith value of € would give the best agreement to the observed set
'u!E values, Table I gives the graduated values of Lhe observed yields, and their
differences, and the column 6 expresses the ratio of the difference (due to
graduation) to the graduated result. Graph I is of the equation y=400— :16x*
which is tlie graduated curve of the yields of the twenty-five plots, € being
taken to be zero. We shall, according to our theory, then take the differences
b_et}ve_en the graduated and the ungraduateéd due to the other types: of
variation. :
GrArE No. 1

(Vide Page 197)

Lé

Id in pounds

400

300,

4 M L R R T

ABGCDEBAECDDEABCECDABCDBAE

yie

Gradaation of 25 plols under five different treattnents. (y=400—:16 x*.)
(4) Random fluctuations

Now we shall consider the other type of errors referred to, that due to
the random fluctuations and statistical measurements. The Theory of
what is knowd as ‘randorh $ampling' is the Dasis for judging how far the
difference between any observed value and the true value could be ascribed to
chance. A few fundamental cosisiderations concerning the theory may not be
out of place in the discussion of its features. Our objecl in any statistica
enquiry is a study of the characters of a population and the evolution of a
mathematical expression involving constants or parameters whose correct
valiies have to be computed from the given data. In cases of the known
population, that is; ifi casés of the distributions whose mathématical expressions
are definitely knowr, the parameters of the expressions have to be deduced
from the slatistic or the sialisiics as computed from the given data. An
Ariihmetic_average, for example, is a statistic giving the best value as couid
be deduced from a given sct of observations. Whalt is known as tke Standard
deviation is another statistic describing the given set of observations
Similarly other statistics could be computed which would give the best values
of the parametéis on whose reliable values our description of the population
depends. But if the parameters of the population should be correctly deduced
there is one fundamental assumption involved in it that the smmple under
considefation consists of a fairly laree number of individuals or theoretically
an infinite number. The statistics cannot give reliable values to the parameters
unless they are computed from a set of data of an appreciably large number of
individuale, But in agricultural experimentition, the numbér of experiments
is obviously limited, and the general problem in dealing with this limited
number of a sample of experiments is ‘ could we atiach any significance to the
statistics obtained from the limited sample? The question which réquires a
gtatistical answer is this: Given a sample of a population, whether and to
what extent could the paranieters or the statistics based upon them tally with
thé parametérs or tlie statistics of (he wholeé populafion whose features
are supposed to be known? A kindred and a more useful guestion is this:
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Given two samples of apopulation, could they be samples from. the “same
population allowing for random errors which could have arisen by chancei
The answers to these questions are obviously based on the theory vl
probability based upon the kindred theory, the fheory of -ervors, ‘and : the
correct solutions of these two problems form the key to the .innumerable
number of problems that arise in the sphere of random sampling such as-we
have in the limited number of experiments that obtain in-the field trials.  For
example, if one field produces 7 tons and the other 8 tons -both being
homogeneous, what sort of significance conld we attach to this difference,
after all would this difference of one ton make an appreciable difference to
jump to the conclusion that the second gives a better yield than the first ? . Or
again, if a series of plots are subjected to several varieties whose diferences
in yield have to be studied, could we attach any significance to the observed
differences which might be small or large? Such a comparison obviously
depends upon the size of the sample—greater the number of plots subjected
to the same variety greater the reliance. could we .place upon any statistic
based upon them. Thus we are led to this consideration :—Given a series of
samples each of size », how could we find onut whether they are homogeneous
or identical samples or whether any significance could be atfached to the
differences between them * - If .the differences -between the samples arise by
chance only, then the differences can be ignored and'the samples can be taken
to be identical, but if they should be due to factors. other than chance the
significance of their differences has to be deduced. -

iv. Concept of Probability and Significance

(#) The Normal Law and its Imnlications

If any error should arise by chance only or by circumstances purely
accidental, then the law of distribution of such errors, if one such could be
theoretically deduced or even assumed, would give us an indication how far
and to what extent the amount of an error could be attributed to chance or
randomness. Now we shall explain the basis of what is known as ° the
Normal Law of FErrors’ which is the classic curve which ** Statistics’® has
adopted in most of the important enquiries where errors are in guestion, or
where deviations from the best value of a sample have to be judeed. First
and foremost in the errors that arise by chance only, we include the types of
errors such as the inaccuracy of an instrument or the personal equation of the
experimentalist, whose causes cannot be diagnosed and whose aggregate sum
cannot exceed a reasonably small quantity, But on the other hand, if we are
able to discover the conditions and the laws of the actions of those errors
however small they may be, the errors are no longer random but transform
into a type of the systematic change referred to already. The Normal
Law of Errors is thus based on three simple hypotheses, firsily, the BITOrS are
taken to consist of infinitesimally small errors whose sum total is by itseifa very
small gquantity, secondly the chance of a positive error oceurring is the same as
the chance of a negative error, so that the sum total of the errors of a
fairly large number. of observations tends to zero, #iirdly the chance, of a
small error is greater than the chance of a large error which is obviously
a necessary condition in dealing with the errors due to chance. = Now these
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hiypotheses are - very well illustrated in the resulting graph {Graph No. 2),

Grara No. 2

Tl . b _l £ o -E*‘?i

1e equation 1s Voa

Yeo=maximum ordinate (when 2=0)
" or height at the mode

A=Total Area=1

N =the total number of observations

« = Standard deviation= ﬁ,/ %{ =({a%9y)
p =Probabie error | :
Area from 2= —p to 2= +p is half the total area A

2 P
oiving P from the .'f‘;f“ F -t dt

relation } p=0-47696

i

‘where P defines p such that p=(P V' 2).¢

-J];T=‘Mn-ﬂulu5' = X V2

n = ‘Mean absolute error'= :Ir,f\/ 2

i

whose ordinates express the number of times each individual error occurs,
as it ranges from zero to infinity. The area bounded by the curve and the
x axis thus represents the total number of observations, and the area
bounded by ordinates between x=ga and x =4 represents the pro-
' . . - '
portionate frequency. In the form given y= J%—ac 2e7,
2

mum ordinate corresponds to the zero error, and the total area is equal to 1.
Thus the frequency of a total of a error (£ a) is the corresponding area
bounded by the ordinates for the abscessae + x. The concept of the
probability of any deviation x is thus based on the assumption of the law of
errors, and the probability of the occurrence of that deviation is the
proportionate area. What are known as Probability integral tables have been
constriicted giving the probability of a particular error happening. The tables'
are given in different forms and the best form® seems to be the one which
would indicate the probability P of exceeding a deviation x positive or
negative. From such a table the lesser the value of I, the greater is the signi-
ficance to be attached to the particular value under consideration that it has
arisen by influences other than chance alonc. '

1 Vide Tables for Statisticians and Rivinclvicians.
=1, L. Kelley, Stalistical Mlethod, pp. 373-385.

the maxi-
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(/) The best Statistics to deseribe a -pﬁﬁuiﬁuuﬁ—-msﬁm'ﬁg-far.-
' Piobable Error '

Now in dealing with a population dbus*:stm-'r of an infinite number su(:h as:
a population of random errors govérned by the Normal TLaw, the two stahshcs_
that best describe its [eatures and in [att stummarise all the information
necessary regarding the population aie what are known as the Ar rﬂuﬂdﬂ:
average and the Standdid deviation, the first two moments ‘of distribution

usually writfen as x and o, Thése two statistics are. fl:inﬂamtmta], -one
expressing the average of the whole set of values and the other the square
root of the average of the squares of the deviations frmu that avetage; and
the formula for the Normal Law itself indicates that ¢ is a very important
factor as expressing the precision of that average Hence to test the deviation

« it is appropriate to tabulate the values of = miher Lha.n A xtae‘If ﬁ-::-m w}u-::h'
the significance of a could be deduced. If x follows the’ Nurmal_l_.aw, it is
a simple result as could be seen from t_he form of the equation itsl_alf, that po

also follows the Normal Law. The following is a scheme giving the pmbabi_lity
P of exceeding :tf for a deviation 4 @ obtained from the Normial laiw.

x 5 P

[

5 60
o8 | +54
1-0 <32
1.5 | -1&
20 | -06
2+5 02
3.0 <003

What is called ‘ Probable Error’ is that value of x which would give a-
probability of just -5 and froin the above schéme it is seen that '-.=.*h|'a:{*+.e:i =.h,

P takes in a valie near to -5. The Probable Error by itself is ‘not of much
vallie excepting as a mathematical eXpression roughly equal tor 2/3 the standare
deviationl and where the distribution i$ wef normal it is certdinly meaningléss
to dftach any significance to it. Now the duestion i§ where and at what value
of ‘P we have to fix up the s:gmﬁcanne to any observed valué. Though fio
hard aud fast rolé ean be laid, it is convénicnt to tﬂ.LE— {he pmnt wheie P= 05

as the border which corresponds to a value 1-96 fc:-r *t . and thus all deviations

exceeding 196 « can be regarded significant and those less, mslgmﬁcant as
due to clmnce*

(6) The best sfatisiics to describé a sample

As referred to already, the Normal Law and deductions of mgmﬁcance
form it are absolutely of no purpose in dealing with a-sample of limited size
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72 as we have in an agricultural experimentation. The problem to be
considered-is what are the best statistics .to describe a sample of # figures,
which would help in judging whether the given sample is a sample of the
known population or whether two samples are identical samples. The:
Arithmeticaverage and the Standard Deviation are the two statistics, as referred
to already, that best deseribe a population nermally distributed, but their best
estimales- as deduced from a sample of such a population _l:uiﬂﬂ be computed

thus ;(—I7or the &_.cithr_nlatit; averaga, the nsual procedure of taking ;]-; X the sum
of the figures of the sample could be taken as the best estimate ; while for the

L]  d l
standard deviation s, the square root of —1>€the sum of the squares of the

iz 1 Y
deviations (as analpgous to =X the sum of the squayes of the deviations, for

the computation of o ) conld be taken to be the most reliable wvalue. (n-1) is
snbstituted for 2 in the computation of s, for the simple reason that the true
Anthmehc average of the papulatmn differs from the Arithmetic average of
the sample, and that (:u-]) in the denominator increases the accuracy of 5. The
first bwo moments then with the slight difference in the computation noted
already could be taken for all purposes as the two statistics describing the
sample, though in cases where the distribution diverges from the normal in an
appreciable degree we have to take higher moments and compute other
statistics to describe the sample completely. In dealing with the errors that
have arisen by chance such as the differences between two samples, their
law of distribution may be taken to be wmgrmal, and the character of
the sample miay be based upon the first two moments only without loss of
precision.

{d) Consistent and efficient siatistics

Now then to judge of a sample, the law of distribution of the original
population is obviously necessary, but when daalinh with a sample of errors
we have assumed that the original distribution is normal. Now having fixed
the characters of ithe sample by means of its statistics, we have to examine
whether and if so how two samples differ with respect to these characters.
Statistically we have to examine the distributions of these statistics as obtained
from several samples. Taking the Arithmetic average for example, we have to
study the law of distribution of the Arithmetic averages obtained from a
number of samples each of size ». Such a distribution would indicate the
sienificance to be attached to the difference between the average of one
sample and the average of another. Just as we inferred significance from the
Normal Law, this new distribution of the average would signify, so far as this
particolar characler is concerned, how far the samples are identical or difierent.
Similarly, we can study the law of the distribution of the Standard Deviation
of the sample and deduce the significance. The principle could be extended
to any other statistic or to any higher moment whose law of distribution as
cbtained from several samples all of the same size # could be made the subject
of study. Thus theoretically, if two samples are identical they must show
stable values with regard to axy moment of their distribution. DBut two
fundamental considerations arise in fixing up a particular statistic for mdping

the significance of samples. The first is that the standard deviation of the
ﬂlhtr:butu}n of the statistic must decrease as the size in the sample is increased,
This is obviously a necessary condition, otherwise the value of the statistic
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cannot reach its true value as obtained from the whoie pupmatmn—__ Such®
stalisties - whose variance'. decreases as # is increased . are: called: rarm.rre::ij
statistics, The second condition 15 ‘that the statistic besides ’I}mﬂg consistent”
must be such that the amount of variance between the ‘several® samp'.ie'a must-'
be as low as possibie. In other words, of the several statistics. thatiaré.
consistent and possible whose laws of distribution could be inferred, the one
whose variance is the Jeast should be prelerred for deduncing. the. significance
of the sample. Not only should eonsistency be reached but also elficiency, if
any statistic should be useful to deduce the probability of a particular value of
the statistic or its deviation from the true value. As an example, if.» is.
appreciably large it is a well-known result that the average of a norm‘ai sampie
is distributed normally with the standard deviation —&T\\'hele o is the standard
deviation and 2 the number in the sample. Again, the law of distribution’
of the standard devialion itself of the sample of appreciable # 15 .also kn—::'.iwn

to be normal but with the standard devialion ——= ’v"__ Hence for the purpose of

sfficiency alone the S. D. of the sample is a better statistic than. the A. M.
We shall examine the distributions of other statistics as deduced from sample:s.
where z is very small.

v, Distribution of s, f;.x

(a) General

Just as % can be subjected to study in case where » is lali'ge, the distribu-

tion of%, where x obtained from a sampie has a standard deviation s which
differs from e, could be studied for deducing the significance of x. Thus from
a sample of » if x be its mean and s its standard deviai:inn,’ the significance of

the sample has to be judged ﬁam the value of — ,:’ Vi mth the heIp of

tables of —. In general, if 'nny statistical L-::-eﬂicient has its sia'idard'de‘.*htion'

known as ﬂhtameﬁ from the sample, the ratio of its value to the standard
deviation could give the significance ai its divergence [rom the assumed true

value from the law of d:slnbutmn nf —. The principle ié usefuily extended

to t]‘lE case wlien two samples Df size ?.c; are Eﬂmpareﬂ ul}use means

are ¥, and ¥, and whose standard deviations are resp&utwe‘.ly 5. and 5. Here
if the dlﬁmences between the samples could havg arisen hy chance only the
mean of the differences of the corresponding figures in -the samples can be
taken to be.zero, and the significance of *;—%, when compared with its

standard deviation %: -1—?:_— * could be judged, and inferences drawn whether

: 1 : ot .
the samples are identical or not. Thus the general theorem on which the
significance of a sample or differences between two samples could be based is
this: If -z be the deviation from the true value, whose sta.ndard deviation is s,

1+ Variance ' used in the sense * square of the standard deviation .
* On the supposition that there is no correlation I:etwc:u the samples.
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the law ol d:stnhuhon of— would provide the necessary probability Integra]
‘la'l::les to jndgr: of the mgmﬁcance of this deviation 2. As in the case of the
Nﬂrmal Law dealt with already, the probabilily # of exceeding the ﬂﬂvlatlun;
could be 'gabicd. and lesser the value of p the greater the significance of x.
But i:l’:_ils.-e;ﬂsily seen -from our discussion that whﬂa—z has a: normal distri-

bution when # is large, E;- could be distributed only in a different way when =

~ dis small as s itself is subject to variation from sample to sample, We have,
therefore first to 'study the frequency of 5 for samples of size 22, and then

deduce I.hl_a_" ﬁ";quency of %_, assuming that the original distribution of the

population is normal, which, as we have seen, is quite a 1egitimqte assumption
in dealing with the errors that arise by accident. The Mathematical deductions
of these distrihutinns are explained in Appendix ..*3,, and extracts from the

Probability Integral Tables for the distribution of — for different sizes are

given in Table No. 9. The nature of these r]1st1‘1butlnn3 for the size 10 are
shown in Graphs Nos. 3 and 5 which would show how they differ funda-

Grare No, 3
(Vide Appendix A 1)

o I z
z
5
(n-2) —din=—
=
- g
Now when #=number of samples=10

let %=3

y=pye

then y= k u""z’e._sa-
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mentally from the Nmmal Law. It can be further seen tnat asne number m
the sample increases the deviation decreases, and as the dewat:un mcreases
the Probability decreases, and ‘if, thevefore, proper: s:gmﬁcanc& Hagito. be
attached to any deviation the les-;e:r ‘h"ﬂillEE of £ are reach&d the greater the
number in the sample.

.+ Now for purposes of reiemng to- the Tables, we need n,-and x/§ from
which 2 is deduced. But new statistical concépts’ have béeen introduced. with
mgsird to-22: “1t is easily seen that with a sample of » figures; Whose'aggregate
is to remain constant, (z-1) of these figures could be altered arbitrarily but
the uth is automatically fixed up if the sum total should remain’ the.same.
Thus. a 'aample of z figures is ‘suppt}sed to have (22-1) degrees of freednm on
the supposition that the sum total or their mean should ‘be ﬁxeﬂ ‘Hénce
instead of referring to-the tables-for u, - the size of the sample, e ‘tould enter
for (7-1), the number of -degrees of freedom, thus ensuring greater accuracy
fm the corresponding value of P. The same ‘principle could be employed for
securing a sunitable value-for »' * in testing the mg‘mﬁcaum of any statistical
coefficient:  If, for example, we are filting a curve to the given data of size #,
say a straight line which. involves two constants, to this extent the number of

v 3 =the nuinber of degrees of freedom.

Grara No. 5
(Vide Appendix A III)

4.0

‘5

Yo

Now let z= ) ) .
- 7"
2) (n=4) . o000 2) L=
e {E:ﬁ; E:—:? 1. .3-1} (a+2z*) 2
5 {: W)h?n :?.1)15 even - . -1-;_
A Ym=2)(=d) . . 31
a {{H—ﬂ ) 42 } (14 27)" 2.

when # is odd
7

=¥ u(1+ 3:}_5-

Here in the graph,
#=10, 2 is taken to be positive
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degrees of freedom is reduced by 2, as any two points in the straight line
fix its position, so that the number of degrees l::f freedom is (2-2). If again
we are fitting a curve of the second degree »'=»~3 and sc on. .E.gaiu, what
is known as the correlation co-efficient of a given number of 7 pairs is ﬂbtamer.l
by fitting a straight line of closest fit to pass through' theé z means and #' in
such a case to test a particular value of the correlation co-efficient = (n—2).

(£3] Sigmfmancn of the Means: Hiustrations from Axg‘rlnultural
experimentaﬂon

We are thus.in a position to attach slgmf cance to-a sample of experiments
or to different samples of experiments. In Agricultural experimentation,
for example, we have to compare the yields of.two wvarieties grown-in . two
sets of plots and find out whether there is any significant difference between
them. Here the problem is to find P for the difference of- thmr ‘means.in
terms of its standard deviation.

Examples are-given in-the tables illustrating the application of the thenryt
Table 3, for example, compares two varieties grown in 10 plots so that " t=9,
The mean of the difference between the corresponding fizures is seen to be
67 -5 whose standard deviation from the column of thé- differences aléne -is
6457 from which /7 is deduced to be 001 shewing that there  is significant
difference between the varieties. It is easily seen that different conclusions
could be reached if we had taken »'=10. - Again, instead of comptiting the
standard deviation from the column of differences we: could compute it from
the standard deviations of the samples themselves,’ but such a procedure is
possible only if there is no correlation between plot-and plot, 'i.e. if‘there is
no systematic variation between the plots themselves. However, we have
seen that there are systematic changes from plot to plot and ther-:tfore tinless
their correlation is known we are not warranted to take that the square of the
standard error of the differences is egual to the sum of the squares of the
standard errors of the samples. Other illustrations are given in Tables 2, 4,
5, and 6 illustrating the significance between varieties, with regard to their
productivity on light and heavy soil, to bunch planting, cropping values of
seeds, and manuring. The conzlusions reached regarding the superiority
of one variety to another are all based upon the mean of the differences being
taken to be the deviation from the zero value assuming the Iatter to be the
true value t;:f the differences. As another il]!.m:itra'tint::erlE of the theory

governing -—, we shall examine the significance of the mlre]almn co-efficient

obtained hetween autumn ramf'dl and wheat crop for I:wenty veals. Here,

A1—
= g ; .=-—~———-—'-“1 - 738 nnd—--‘=~3-f£3.a iving P <01

¥ 629 and its S.D Vo3 59) g g‘ ;
shewing that the observed wvalue of » is definitely tlmuﬁcqnt Here it is
necessary to point out that it 15 always risky to rely upon the significance of the
correlation co-efficient, or as a matter of that any regression curve, as computed
from a limited number of data, for the simple reason that there is no method
for knowing anything of the true values of the regression constants and that
therefore to adopt statistical methods to attach any significance to the
observed co-efficient 15 only putting the cart before the horse.. IExhaustive
enquiries alone could secure stable values for the co-efficients ~in such cases.

1 5?mg* 452 could be used.

?Thiz illusiration is given in Page 158 ' ':-fm!:shm! ﬁ!fﬁrm': foi !f.‘f.ramr).- Iurders®
by R. A. Fisher.
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(c) Distribution of x°

(1) GrsrRAL

Till now we have been answering the only question how far we. could
idehtify two samples of ﬂxl?eri:lﬁﬁﬂtﬂ._ The other guestion—the prior question

put==, whether a sample is a sample of a known distribution still ‘remaing
unanswered. The same method of the significance of ¥ could” be employed,
but in all cases there is no gunarantee that ® can be very much relied upon,
nor can we be sure that each difference between one sample and . another
ineasures to a reliable extent the error {rom the true value as due to chance,
Henen we have to think of other statistics whose distributions could give the
significance sought for. The problem in general terms counld be stated thus
1f 92y, Wby M2 + + + » be a setof known values and if mz -+, wedan, mat i,
. . .. be the corresponding set of observed values, what.would be. the bets
statistic to measure the significance of these errors ay, am, +« .7 The statistic
must be the one based upon these errors themselves, and so long as we are

sire bf thé known of lh&bretii:al set the distribution of E(';%)"ﬂ.l}* requires

a study; where we take the sum of the squares of the propottionate deviations
of the individual efrors. g ° is obviously analogous to 's% and if # be the
.

\ . -:U .Fb - & n -
number ih the sample = 5- Asg the distribution of §° is known (vide Graph

H
. S5 . U ) }
No, 4), the graph of 5 oF X itself is deduced, (For the distribution of & !'*vif_le

Grara No. 4
(Vide Appendix A II)
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Now when n=number of samples=10
=, e 3

lefi.;=3=':‘i
« 10
7
Iy=k'w?32¢—'53'

JAppendix A). It is ensily seen that as x® changes from zero to infinity,

P changes from 1 to 0, and greater the value of P greater the correspondence
between the theore!:mal and the observed set of observations. ‘T'he limit of
significance can be placed at P=:05 as in the case of the other distributions
considered already. Extracts are given in Table No. 10 giving the Probability
of x* for #* the number of degrees of freedom. As an illustration, the
numbers with blzck and red eyes are observed in 33 families of Gammarn$
{Huxley's Data) and it is for us to test whether the Mendelian ratio 3: 1 due
to linkage is followed in this case. It is found from the 33 freqguencies,
x® =-35-620. From 2=32 itis seen that P is not small, and hence ali families

agree fairly closely in this particular trait.

(2) BINOMIAL AND POISSON DISTRIBUTIONS

The theoretical set referred to from which the deviations of the observed
set were measured, might be one which has been decided from the past
experience from similar enquiries or one deduced purely {rom theoretical and
slatistical considerations. We shall deal with a distribution that is of common
use in the Agricultural EEPEHmBnthn besides the one dealt with already
the Normal Law of errors. If chance shotrld be the only governing factor, it
is a simpie slatistical result that the terms of the expansion of {:;b-l-q:l“ﬂ

Gurary No. 6

Binomial Curves
I (p4q)" and p=0-5
11 (p4a)® and p=0-08
1T {p4dq)7 and p=0-01
* If pis very small and # increased indefinitely fo thal # A is finite, the limit of the
bimomial is the Poizsson's exponential series.  (Vide Biometrica, Vol. 10, pp. 35~
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express the probabilities of happening of 0, 1,2 . . ., 2 E:vents “of the
sumiple of » experiments.  The Arithmetic average of all the terms' ik np and
the standard deviation #pg.  The Graph No. 6 indieates how with the. changes
1 the value of 2, the form changes continuously from one -of symmetry to
one of increasing asymmetry. The relation between #p and apg- lhe first
fivo moments decides the nature of the distribution. Tables have: been
consiructed giving the probabilities for different sizes of the sample as deduced
from the binomial distribution and the observed set of figures can-thus be made

to correspond to the theorctical sct. .,L could I.hua be mmputﬂd antl I‘rf:rm the
table of ju° the significance of a particular value of J5? is deduced. . Here are
two illusirations exemplifying the application of X°.  (Vide lﬂbles 7 and
8) In the first, we assume 2 binomial law and ;* is found to be 7740

With 2'=10, P=-654 showing that the theoretical and the obkge.rvad closely
agree. In the other there is perfect agreement hetween the observed and the
Poisson exponential. _

vi. Concept of Variance—Correlation Cmeffiﬁ"iént?
(@) Genersal '

The ideas of significance which we have deall with so far lead us {o a very
important topic connected with the Agricultural experimeniation. As we
have referred to already the different types of variations and the different
factors that produce the variations in the eventual yields of the plots under
experimentation bave ito be analysed and subjected to statistical scrutiny.
Though a single sample or different samples of experiments have been tested
with regard to homogeneity, the problem still remains how fo measure the
interaction or correlation, if any, between the members of the same sample.
If the whole population could be split up into » samples, each sample contain-
ing % observations or experiments, then if all the 2 samples are homogenecous,
the statistic such as the Arithmetic average would shew consistent values in ali
the samples, and the standard deviation of the statistic will be indeed a very
small quantity very close to zero, and thus the identity of the sampies is
established and there is no correlation between the individuals of the sample.
But what ordinarily happens is that {he standard deviation of the sampie is
significantly difierent from the standard deviation of the average of the sample
which is nowhere near zero, in which case the two standard deviations have o
be separated and their mutual significance has to be studied. Thus when we
deal with the heights of # pairs of father and son of the same family, while
the father and son of any family would give a standard deviation of its own,
the averages of the father and son as obtained from » samples would give a
different standard deviation, ~ The two causes of deviation being different, the
values of the two standard deviations and their significant difference based
upon their individual degrees of freedom decide whether there is any correlation
between any pair of observations. The result coultj be put in this form:
The total variance T of all the » samples containing £»z observations, could be
split up into two different variances, one due to the deviation of the individuals
of each sample {rom its average, and the other due to the deviations, between
the several samples, of the average of each sample. If the latter variance is

* The idens in this section are taken from several papers dealing with the Intra ciass

correlntion, {'inde R, A, I‘hlier. Pawes 176-232),
f * Variance ' is used in the sense of ' the square of the standard deviation.'
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'srgmﬁcanﬂj,r greatar than the former the correlation, if there should be any,
must be positive, but if less it is negative. The [ollowing simple equation
explains how the total variance is split up:

k:z. fne 2
= ($-FF = EF-F) Ak E (F Y
1 1 1

where x is any individual observation, ¥ the Arithmetic average of the whole,

‘t-'p the average of a sample. This simple principle of analysing the total
variance due to.two causes only could be easily extended when the total could
be split up into variances due to any number of causes. If, for example, the
vield of a particnlar-plot be due firstly to the plot itself, next to manuring and
lastly to the variety grown, the variances of these causes could be separately
computed; and the sum of these plus the wvariances due to the sub-classes
should be equal to the total variance if there should be no other cause of
variation. Again, in the study of rainfall from hour to hour, from day to dav,
and from month to month each particular item of hourly rainfall belongs to a
particular day and to a particular month, the total variance of all the yearly
items being thus equal to the monthly and the daily variances plus the variance
due to the interaction of causes and deviations in each class. One more
illustration - from the Agricultural experimentation of plot-trials subjected
to different varieties. In the plot-technique, we insisted upon a random
arrangement of the varieties in each block, and thus several blocks were dealt
with which are themselves subject to variations in fertility. Now to bring out
the differences between the varieties markedly, we have to compute separately
the wvariance due to the blocks, the variance due to the varieties and the one
due to the random errors of measurement, and we have to examine statistically
the significant difference between one variance and another, This analysis of
variance is thus a key to the solution of problems where we have to examine
the differences between the several causes producing an aggregate result,

(#) Eignificance of the difference between two different types of
variance—Illustrations

Thus we are led to this statistical problem—what is the best statistic
to signify the difference between the variances due respectively to 2, and w,
degrees of freedom ? In the ideal case when 7, and 7, are infinite and when
their distributions are normal, the chance that the two variances are equal is
just +5. The best statistic z that wonld bring out the difference of one variance
and another is half the difference of the logarithms between the two which is

found to be distributed normally with the standard deviation ,\/ ( )”
Hy  Ma

and thus the Normal Law Probability Integral Tables could be useﬂ to
measure the significance of the difference between the two variances., Tables
are constructed giving for any value of half the difference of the logarithms of
the two variances the probability P corresponding to #, and .,

Here arc two examples illustrating this principle of analysis of vavianee :

* (1) A plot of land is divided into 36 patches on which 12 varicties are
grown and each patch is divided into three lines at which three different
manures are tried. Thus the yield depends ppon the particular patch, the

* This is strictly true only if »y and », are appreciably Jarge or when they are cgual, In
other cases the significance is obvious from the varinnees themselves,
U Thie example and the explanations arc taken from Fisher (Vidi: Supra), page 205,



194 The Madras Agpricultural Jonrnal [ Vol xvirg, No. i

paruculm variety and the particular manure. The following is the analysis of
the varinncees due to several causes : ' L=t

3= e y ad

Number of
Degrees of Freedom

The cause of variance Amount of vat;ianc_c,‘

N > 4

Between varieties o3 11 1-967

Between patches of the same _
variety .. 24 ~727.

Between manures e 2 <175

Differential response of
varieties o 22 010

Difterential response in )
patches with same variety .. - 48 ' -168

Total .. | 107 , +670

From the above analysis the following infervences are easily drawn:
Firstly while 24 degrees ol freedom for the patches give a variance. <727, 48
between the patches growing the same variety give only -168 proving the
significant difference between the plots when compared with the effects of the
varieties on the plots. Again, among the varieties themselves for the 22
degrees of freedom the variance is only +01, which is enough to indicate that
there is not much difference between one variety and another, The difference
between the manures gives only +175 which is not very high when compared
with the differential response of varieties, shewing that the manures do not
demonstrate any ‘ngmﬁcant difference.

¥ (") Iive varieties are grown each in 6 different plots. The lotal
variance is split up into variances due to several causes,  Thus we have this
scheme :

' . No. of Degrees | Amount of
The Cause of variance of Freedom - ‘| . vatiance
Between varieties ‘ . RS 41-36
Between plots growing the same variety .. 25 1715-72
Between plots of the same number serially '
arranged for the same variety ¥ 5 424.30
Between varicties taken two and two grown :
in plots of the same number Y 50 A 3228-40

! Thisexampleds taken from ' Zhe Principies and Practice of Yield Trm!s by Engledow
and Yule, page 18,



April 19307 Probable Efmr: in Field Experiments 195

From the gbove analysis it is clear that while varieties exercise a
variance of 41-36 the plots themselves produce an abnormally large variance,
showing the decided effect of the plots when compared with the varieties. A
further examination shows that in the experiment a [airly high randomness
has been secured in the rep]icatinn of varieties as the variance between the
“serial numbers of plots is comparatively low. Lasth,* there is not much
mg‘mﬁmnt difference between the adjoining plots and between plots growing
the same variety. In every one of these cases the actual probability could be
deduced from 'the tables, and the significance deduced.

APPENDIX A
I
Distribulion of 5%

Let a sample consist of n data i, s, %3 2a; let the original distribution
follow thenormal law ; and let the averages of the sample and of the original
population be respectively x and m. Then ﬂbvmus]y the probability of the »

—3 = (z7m) *
- values occurring=Constant X ¢ o* X 8xi.é%3 .00 820 (1)
Now if 5 = l—-E (x - )¢, after transformation (1) reduces to=Constant
7 s

R_ﬂ —g}(ﬂ 5* L [:?-—m}’)

o a” 3 “ & x4 s
From this the law of distribution of s is seen to be
—3 m' =
-2
y=_Constant X s e * (Vide Graph 3 for #=10). (2)
IT

Distribution of 5% and X *

From (2) the frequency of s * is easily deduced. Since Q (s °) ¢ (&)=
Q (s*) % 2s ds, it is seen that the law of 5* is obtained by dividing the frequency
=3

3 5O
of 5 by 25.. . Thus the {requency of s*=Constant X {sf} 2 .
The law of G° is again inferred from (3), as X =i¢— This gives that
)
- 3 % —4 L (4)
t]:u:e fraqueucy of X *=Constant X (-1:) 2 ¢ 3

(Vide graph 4 for n = 10).
* Vide Biometrica, Vol. 10, pp. 522-523
4
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Distribution of

. ) s -
(Biometrica, Vol. 6, Fages] =i
Now it is a well-known result that: x obtained fmm sampies of 1.is

distributed accarding to the normal law with a standard deyiation .—‘,.r__ s;g

that the frequency of 2

|
Bl

— (1)

=Constant X ¢ 2 ¢

Ib-]

To deduce the frequency of % < = g first we shall take 5 to be cnnétanf._

—_

{rom sample to sample. The distribution of % is then :
a5

2 .2
—ns° z
=Constant X s X ¢ _ 2¢° (@)
But as s varies the probability of s occarring

s-ds

f G - |
= :'P.zf. n | @

_/ s{ﬂ-z}gd_;i’ ds

0

(from the distribution of s.)
Hence the frequency of = is obtained by multiplying (2) and (3) and
y of = .

summing for all values of s which reduéesl to

inf. X .

o _ s (1+2%)
Constant * f s e 2¢° ds
a e
b= . .
) — s :
(922 b Y .
f s(H }e 25" ds

o :
By a process of reduction, this integral reduces to
Lo

_ () () - 53 (14 T2

(#-3) (n-5) - 4.2 ~ (if 2 be odd)
or _n
_1@2)(md) « 42042 2 - _
= (#:3) (n:5) ~ 31 . (if » be even) (4)
Tables are constructed giving-the pmbahsht},v integrals of (4), by the
L -2

subslitution of z = tan !‘? which gives fnn (1 +2’} 2dz =cos 0db, whlch '
could be easily integrated.
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TABLE 1
Graduation of 25 plots under five different varieties
Vari et_c,r- Plot Observed Graduated Difference of R;Itlie of
Yields Values (3) and (4) (5) to (4)
(1) (2) (3) (4) (5) (6)
A 1 450-00 39984 5016 13
2 340-00 392.16 ~52-16 13 -
3 43000 372-96 57-04 15
4 37000 342-14 27-86 =02
5 380-00 30000 8000 27
B 1 41000 399.36 10:64 103
2 320-00 399.04 -79.04 -+19
3 40000 36864 3136 09
4 310 00 35600 —46-00 =13
5 290.00 315:36 -25+36 —-+08
C 1 37000 . 398-56 -28:56 08
2 37000 38704 -17:04 =+05
3 360-00 - 364-00 - 4:00 =01
4 400:00 35376 46-24 13
5 40000 329-44 7056 «21
D 1 430-00 398:44 31:56 08
2 410-00 384-00 2600 07
3 360-00 38064 =20-64 —05
4 330-00 343:16 =13-16 — 04
5 330-00 322+56 7-44 02
E- 1 370-00 - 39600 =26+:00 —07
2 48000 388.76 90-24 23
3 40000 37696 23.04 .06
4 400-00 35904 40 .96 11
5 360-00 307-84 52.16 «17




1us The Madras Agricullural Jorrnal [VoliziiriNo. 4

To illustrate the significance of means’
_ TABLE 2
(Latvacted trome Bivmetyica, Vol, §) )
Soft and Flard seeds on light and heavy soils

1899 © Utag00 | o Ager”
Light Heavy | Light Heavy | Light Heayy

f

Soft seed .| 7-85 8.8 | 14-81 13.55 | 748 15.39

Hard seed .| 727 832 | 13.81 1336 | . 7.97 1313
Difference .| 58 .57 | 1.00 19| -0:49. 226
_Average ‘ ' |
Soft seed veo 11:328
Hard_ seed .o 10+643
Diffeience - -GBS
- | .
#'=5§; 8. D.=+778; z= ==:1:93; P=-18 (nearly).
' s/ n :

The difference is not significant, when compared with the soil.

TABLE 3 |
(Extracled from Agricnltural Jowrnal of India, Vol. 2v)
To illustrate the difference between varicties

o
Plot Number | Vield of variety A | Yield of variety B Difference

1 703 670 33

2 705 630 75

3 653 560 93
4 G40 - 615 . 25

. 5 700 - 542 158
6 715 : G67 ' 45
7 647 702 -55

3 548 730 . , 98
9 918 758 - © 160
10 870 830 40

(1) Average of Difference=67-5
(2) 8. D.  of Difference=64+57

x
= = = 3-00 .
s/ v n
nt ' = 0
P ' = .01 (nearly,)

The difference is clearly sighificant,
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TABLE 4
To illustrate the problem of Bunch Planting
: Singles Doubles Difference
Variety
- Grain Straw Grain Straw Grain Straw
A. 300 500 305 520 5 20
- B. 250 320 280 315 30 -5
& 380 600 360 616 ~20° 16
D. 400 620 420 630 20 10
Grain Straw
Average Difference 875 10-25
S. D. e | 22:07 9-75
x
== = . 67 i-83
* s{vn : :
T =
= -56 (nearly)| -17 (nearly)

Difference not significant in grain but comparatively significant in straw.



To illustrate the nrﬂpt-:rfﬂg‘ value 'D_f seeds

The Madras Agricvdtural Jowrnal

TABLE 5

[Vol. xviiNo. 4 -

; . N A, D'iffff;fenm;:'
Main Thalus . Nu.j sery Hetween 2 & 3
1 2 3
Grain | Straw | Grain | Straw | Grain | Straw Gram Straw
Variety A. ... | 400 | 606 | 410 | 620 | 405 | 630 | 5. .-10
. B 425 | 635 | 420 625 | 415| 00| 5! 25
we Co .| 500 | 7001 515 | 725| 525| 730 | -0 -5,
n D, 480 | 650 | 490 | 680 | 500 | 620 -10| 60
Average 451 | 648 | 459 | 662 | 462 | 645 -3 17
S. D. of the differ-
ence - o 8:67 | 32-28
z= 5 = ) . 7| 1-05
vV |
a = 3.

Since P is large, there is no significant difference between (2) and (3).
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SIGNIFICANCE OF &~
| TABLE 7
(Extracled from Biomelrica, Vol 10)
Suicides of Women in Bight German States’
Number of Suicides. | 0 |1 |2 |3 |4 |5 |6 |7 5 9 . 1{] Total
o R T B
- over{ -
Observed frequen- i M
cies 9 119 (37 |20 15 11 8 (2 3 |5 [3 | 112
Theoretical or Bino- , s :
mial Frequencies, [12-6{18-4/18-8 15-4|13-2 9-9/7.2/5°13-512-4| 45/ 112

x°=7740 #' =10 P = -654

This shows that the observed and theoretical closely agree.

TABLE 8
(Taken from Biomelrica, Vol. 1¢)

T o "

Number of deaths

Observed frequencies ,..

Poisson’s Exponential frequencies...

0
109
108+7

1
65
66:3

2
22
20-2

4 and
over

0.7

Here p° = 44l #' =3 P =92
This shows perfect agreement with the theory.
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