Short Note

Screening of Rice Genotypes for Resistance to Yellow Stem Borer, *Scirpophaga incertulas* (Walker)

R. Nalini* and R.K. Murali Baskaran

Department of Agricultural Entomology Agricultural College and Research Institute, Madurai - 625 104

Seventy four rice cultures developed in TNAU rice research centres were screened for resistance to yellow stem borer under field condition during Rabi, 2011 - 2012. The genotype CB 08504 had the lowest dead heart incidence (1.48%) with the resistan ce rating of 1 (resistant). It was followed by TM 08610 (4.65%) and CB 06651 (5.10%). Grain yields recorded under protected condition for CB 08504, TM 08610 and CB 06651 were 6389, 6325 and 6244 kg/ha respectively. With regard to white ear incidence, AD 08142 had the lowest incidence of 1.25 per cent and significantly differed from all other cultures, followed by ADT (R) 46 and TNRH 206 which recorded 5.40 and 5.62 per cent white ear respectively. Under protected condition AD 08142, ADT (R) 46 and TNRH 206 recorded the grain yields of 6875, 5205 and 8275 kg/ha, respectively. At both vegetative and reproductive crop phases, AD 08142 and ADT (R) 46 recorded the scale of 1 (resistant). AD 08142, CB 08504, TM 08610, CB 06651 and TNRH 206 (hybrid) can be promoted as they have yellow stem borer resistance in addition to good yield.

Key words: Yellow stem borer, rice genotypes, resistance, dead heart, white ear, grain yield

Rice stem borer complex is considered to be the most serious constraint in Rabi crop of Periyar Vaigai Project area of Tamil Nadu. Of the several species recorded, the yellow stem borer is the dominant one followed by pink stem borer, dark headed borer and white stem borer. Exploiting chemicals and biological control agents along with varietal resistance into a unified IPM system will play an important role in the management of rice yellow stem borer. Varietal resistance plays an important role and till now no rice variety is completely resistant to stem borer attack. However, there are sufficient differences among varieties to make varietal resistance an important factor in insect pest management. Stem borer resistance is governed by horizontal resistance and is polygenic in nature. Literally, continuous attempts have been made to incorporate moderate levels of resistance from several donor parents into improved varieties. In line with this, the present study aimed to screen the rice genotypes developed at TNAU Rice research centres against yellow stem borer, Scirpophaga incertulas (Walker), Pyralidae, Lepidoptera.

Materials and Methods

Seventy four rice cultures developed in TNAU rice research centres were screened for resistance to yellow stem borer under field condition during Rabi, 2011 - 2012 at the Department of Agricultural Entomology, Agricultural College and Research

Institute, Madurai. The test genotypes were planted in two rows of 2m long. The susceptible check TN 1 was planted for every 20 rows of test genotypes. Two replications were maintained. The crop was raised following standard agronomic practices of irrigation and fertilizers. The efficiency of field screening was enhanced considerably by adjusting the planting time of the rice genotypes, such that peak stem borer incidence coincided with the susceptible stage of plant. Likewise, to ensure high level of infestation the egg mass were collected from rest of the rice fields and confined in Petridish containing moist filter paper. Three -day-old larvae were released in top most auricle of the plant using fine camel hair brush. The test genotypes were observed at 20 days after the larval release for dead heart occurrence. In addition, white ear incidence was also recorded ten days before harvest. The infestation was expressed as per cent dead hearts and white ears calculated as per the formula suggested by Shafiq et al. (2000). The test genotypes were rated for resistance based on the Standard Evaluation System developed for screening for resistance to yellow stem borer (IRRI, 1988) and the rating system as shown below was adopted.

Standard Evaluation System for yellow stem borer

0.0 20.0.							
S.No.	Scale	Dead heart(%)	White ear(%)	Resistance rating			
1.	0	No damage	No damage	Highly resistant			
2.	1	1-10	1-5	Resistant			
3.	3	11-20	6-10	Moderately resistant			
4.	5	21-30	11-15	Moderately susceptible			
5.	7	31-60	16-25	Susceptible			
6.	9	61 and above	26 and above	Highly susceptible			

^{*}Corresponding author email: naliniento@yahoo.co.in

The susceptible check averaged more than 20 per cent dead heart and 10 per cent white ear for the screening to be considered valid. To record the grain yield, all the genotypes were raised separately under field condition in 5x4 m plot and two rounds of insecticide spray was given at 15 and 45 days after transplanting to protect the crop from natural insect incidence.

The final data were analyzed with analysis of variance (ANOVA) and means were separated by Duncan's Multiple Range Test.

Results and Discussion

The analysis of variance showed significant differences of dead heart and white ear incidence among the genotypes screened and the results are furnished in Table 1.

Resistance expressed at vegetative phase

The dead heart occurrence in test genotypes ranged from 1.48 to 30.23 per cent. Out of the seventy four genotypes screened, 27 genotypes had dead heart incidence below ETL. The genotype CB 08504 had the lowest dead heart incidence (1.48%) with the resistance rating of 1 (resistant). The next best genotypes with low dead heart incidence was TM 08610 (4.65%) and CB 06651 (5.10%). Grain yield recorded under protected condition for CB 08504, TM 08610 and CB 06651 was 6389, 6325 and 6244 kg/ha respectively.

Khan (2005) studied the reaction of Basmathi varieties to yellow rice borer, which revealed that Basmati Super was resistant with minimum of 2.05 per cent dead hearts and variety Basmati 370 had maximum 4.01 per cent dead hearts under natural conditions. The varieties under natural conditions were ranked as Basmati Super > Basmati 2000 > Basmati 385 > Basmati Pak > Basmati 370 ().

Resistance expressed at reproductive phase

With regard to white ear incidence, the genotype AD 08142 had the lowest incidence of 1.25 per cent and significantly differed from all other cultures. The next best genotypes were ADT (R) 46 and TNRH 206 which recorded 5.40 and 5.62 per cent white ear respectively (Table 1). Under protected condition the genotype AD 08142, ADT (R) 46 and TNRH 206 recorded the grain yield of 6875, 5205 and 8275 kg/ ha, respectively.

Resistance expressed both at vegetative and reproductive phase

On viewing the resistance expressed at vegetative and reproductive phase, two genotypes viz., AD 08142 and ADT (R) 46 recorded the scale of 1 (resistant) at both dead heart and white ear for the yellow stem borer damage (Table 1). Whereas 16 genotypes viz. ACK 09103, ACM 08021, AD (Bio) 09505, AD 08010, CB 06651, CB 08504, AD 08130, CB 09142, TP 08043, TM 08610, TM 07275, TNRH

258, CB 05219, AD 07264, TR 05043 and TNRH 237 recorded the scale of 1 for dead heart and scale 3 for white ear (moderately resistant) for the yellow stem borer damage (Table 1). The released varieties CR 1009, BPT 5204, TRY 3 and CORH 3 were on par with them.

Khan et al. (2010) observed maximum dead hearts (58.35%) and white earheads (13.67%) in Basmati Super whereas minimum dead hearts (13.63%) and white earheads (2.35%) in IRRI-6 followed by DR-83 and KSK-282 with 20.06 per cent and 25.74 per cent dead hearts and 9.45 per cent and 4.97 per cent white earheads, respectively. IRRI-6 was found not only tolerant to rice stem borer attack but also showed maximum number of tillers (49.60), spike length (32.61cm), grains spike-1 (132.8), thousand grains weight (35.67g) and yield hectare-1 (6.53 tons). However, it showed less plant height (97.22 cm) compared to other tested varieties. Over all, results showed that fine varieties (Basmati) were highly susceptible to the yellow stem borer compared to the coarse varieties tested.

Khan et al. (2003) screened eight rice varieties JP-5, Swat-1, Swat-2, Dilrosh-97, Basmati-385, KS-282, Gomal-6 and Gomal-7 for their resistance against rice stem borer. None of the tested varieties was free from the attack of rice stem borer. However, variety KS-282 was found resistant as compared to other tested cultivars.

Resistant donors to yellow stem borer

Among 118 released varieties from India, 12 were resistant to yellow stem borer (Subudhi et al., 2007). Sudha was identified as a common donor of resistance to stem borer.

Further screening has identified IR75288-38-3-1 as an important donor for stem borer resistance, with more than 86 per cent larval mortality both on detached leaf and with field screening (Li et al., 2010).

Reaction of aromatic/ non-aromatic rice varieties to stem borer

Abdul Rehman Dhuyo (2009) studied the genetic variability of rice varieties to stem borer. Scented rice entries viz., Lateefy, DR-65, Basmati 385, Basmati 370, Shaheen Basmati, DR-66, DR-61, DR-67, IR67017-13-3-3, PARC-228, Ambreen were noted more susceptible than the coarse rice entries for yellow rice stem borer. The aromatic rice entry Lateefy recorded moderate resistance to S. incertulas under field and green house conditions than the other aromatic entries. The medium maturing coarse rice entries viz., Tox 3241-21-3, LTPR-4-32-1-1-1, ITR-344, LT9852-5-2-1-1, CT22048-3, KAJAT-2, IR86949-1, TCX3162-11-1-2-1, IR65077-33-1-3-3, IR68068-99-1-33, DR-58, IR-6 were comparatively more damaged by yellow rice stem borer as compared to the early maturing rice entries DR-83XDR-92, DR-83XDR-46, DR-

Table 1. Reaction of the rice genotypes to yellow stem borer under field condition.

S. No.	Culture	Dead heart %	Scale	White ear %	Scale	Grain yield (kg/ha)
Sho	rt duration genot	ypes (100-1	10 days	s)		(rtg/ria)
1	TM 07335	9.18a-h	1	15.90d-j	5	516
2	ACK 09103	9.89a-i	1	8.62a-i	3	527
3	ACM 08021	10.78a-j	1	7.04a-f	3	666
4	AD 07105	15.63b-j	3	9.88a-i	3	533
5	AD(Bio) 09505	6.05a-d	1	9.94a-i	3	705
3	AS 10046	12.61a-h	3	8.33a-i	3	636
7	AD 08010	6.47a-e	1	6.58a-e	3	677
3	CB 08504	1.48a	1	10.19a-i	3	638
9	ADT(R) 45	11.09a-i	3	7.94a-h	3	550
10	ASD 16	21.81j-l	5	13.38b-j	5	513
Med	dium duration ger	notypes (110)-125 da	ays)		
11	CB 07537	11.74a-j	3	11.63b-i	5	527
12	TM 08560	11.02a-j	3	17.64i-j	7	527
13	AD 08130	8.91a-g	1	10.49a-i	3	627
14	ACK 09009	17.64e-k	3	13.32b-j	5	627
15	TM 07278	14.23b-j	3	12.46b-j	5	767
16	ACM 07001	12.20b-j	3	7.79a-j	3	767
17	ADT 42	9.52a-i	1	11.82b-i	5	580
18	ADT 39	13.20b-j	3	7.18a-f	3	590
	g duration genoty				3	390
-011 19		-			2	647
	CB 09153	15.50b-j	3 1	6.32a-e	3	
20	CB 09142	10.86a-j		6.23a-c	3	657
21	AD 08141	16.50d-j	3	6.27a-d	3	662
22	AD 08142	10.67a-j	1	1.25a	1	687
23	ADT (R) 46	7.93a-f	1	5.40a-b	1	520
24	CO(R) 50	20.72i-l	3	11.69b-i	5	545
	g duration genoty					
25	TP 08043	10.64a-j	1	9.75a-i	3	609
26	AD 08087	17.78e-k	3	8.32a-i	3	559
27	SWARNA	16.35c-k	3	10.37a-i	3	523
28	CR 1009	6.02a-d	1	8.04a-i	3	580
	ality Rice - Early (
29	CB 08517	9.84a-i	1	14.35b-j	5	561
30	CB 08513	14.45b-j	3	10.73a-i	3	533
31	AD 07073	17.14d-k	3	14.33b-j	5	663
32	AD 07320	19.14f-l	3	12.50b-j	5	672
33	ACK 09002	13.40b-j	3	8.38a-i	3	500
34	AS 10024	16.05c-k	3	17.63i-j	7	638
35	TM 07030	9.38a-h	1	34.20k	9	616
36	CB 08514	13.10b-j	3	15.37c-j	5	613
37	ADT 43	12.71a-j	3	8.12a-i	3	527
Qua	ality Rice -Mediun	n (130-140 d	days)			
38	CB 09123	10.43a-i	1	15.35c-j	5	682
39	CB 09138	15.24c-j	3	11.19b-i	5	772
40	AD 08132	14.95b-j	3	6.33a-e	3	682
41	TM 08610	4.65ab	1	8.18a-i	3	632
42	AD 04072	9.24a-h	1	12.62b-j	5	722
43	AD 07302	11.74a-i	3	6.91a-f	3	687
44	ACM 08028	15.95b-k	3	16.32f-j	5	775
1-1 45	CB 06124	7.21a-e	1	11.85b-i	5	677
46	CO (R) 49	13.57b-j	3	11.65b-i	5	640
	ptive Research T	,			J	J -1 U
40a 47	•	20.11g-l	3	0 days) 10.00a-i	3	600
	CB 06535	•				609
48	TP 08010	15.51b-k	3	10.68a-i	3	612
49 -0	AD 04001	14.78b-j	3	8.26a-i	3	635
50	ACM 01010	8.87a-g	1	14.52b-j	5	687
51	ADT (R) 45	12.13a-j	3	9.11a-i	3	710
	ptive Research T					_
52	AD 03005	12.47a-j	3	8.93a-i	3	599
53	CB 06651	5.10a-c	1	7.34a-f	3	624
54	TM 07275	9.37a-h	1	7.31a-f	3	612

55	CB 05219	9.69a-h	1	9.93a-i	3	6040			
56	AD 07264	8.37a-f	1	6.41a-b	3	5943			
57	BPT 5204	9.79a-i	1	6.22a	3	7125			
	Genotype for Saline/Alkaline								
58	TRY 1	13.78b-j	3	10.29a-i	3	3739			
59	TRY® 2	13.27b-j	3	9.98a-i	3	4862			
60	TRY 3	9.78a-i	1	8.28a-i	3	4421			
61	TR 05041	15.51b-j	3	9.44a-i	3	4747			
62	TR 05043	7.02a-e	1	7.58a-f	3	3765			
63	ACK 09002	9.07a-g	1	12.14b-j	5	3745			
64	ACK 09013	9.89a-i	1	12.40b-j	5	3016			
	Hybrid Rice Medium (125-140 days)								
65	TNRH 244	9.51a-i	1	17.42g-j	7	8692			
66	TNRH 237	7.98a-f	1	8.13a-i	3	7075			
67	TNRH 27	10.20a-i	1	14.46b-j	5	8475			
68	TNRH 206	16.59d-k	3	5.62a-b	1	8275			
69	TNRH 222	18.76f-k	3	12.20b-j	5	7175			
	Hybrid Rice Early (100-120 days)								
70	TNRH 258	10.04a-i	1	8.46a-i	3	6917			
71	TNRH 259	30.231	5	15.97e-j	5	7375			
72	TNRH 193	13.04b-j	3	11.49b-i	5	7542			
73	TNRH 243	10.43a-i	1	17.52h-j	7	6958			
74	CORH 3	9.75a-i	1	7.78a-g	3	6917			
75	TN 1 (S check)	27.23kl	5	21.52j	7	4542			

Mean of two replications.; In the column, means followed by same letters are not significantly different (P=0.05) by DMRT.

82XS.Kangani, ZHONG-XIANGI, IR72885-1-4-1-4-3-6. JIANGZHOU-XIANGNUD, DR-64 and DR-83.

Sarwar (2012) reported that non-aromatic IR 8 and Sharshar had 3.21 per cent, 2.47 per cent dead hearts, 6.05 and 4.24 per cent whiteheads and higher production of 2313 and 2807 g per 4.5 m2, respectively. While, aromatic Basmati-370 and Mehak with 5.44 per cent, 4.75 per cent dead hearts, 8.94 and 7.45 per cent whiteheads and production of 1500 and 1823 g per 4.5 m2, respectively, had higher borer infestation.

Mechanism of resistance to stem borer

The mechanism of rice varietal resistance to the yellow stem borer in terms of vascular bundles arrangement, layers of sclerenchyma tissue, water content and silica content are to be explored for the promising genotypes in future. Chandler (1968) reported that stem borer resistance is derived from several characteristics of the rice plant. Rice varieties with vascular bundles arranged closer than the width of the larval head offered resistance to larval boring. Varieties with thick layers of sclerenchyma tissue were usually less heavily infested than those with thin layers. Similarly internal factors such as silica content and other chemical characteristic may be involved. Panda et al. (1977) observed a negative influence of high silica contents of a resistant rice variety on the utilization of starch by the rice- borer. Pathak et al. (1971) detected worn mandibles of the larvae feeding on a variety with high silica contents and making the larvae inefficient feeder.

The cultivation of rice variety IR 198007-21-2-2 having low water and high silica contents should be encouraged in the field, to get a borer-free crop and

to check further proliferation of the pest in the rice growing tracts (Marwat and Baloch, 1985). Eventually, rice varieties are to be developed with low water-uptake characteristics, high silica contents and desirable pool of agronomic characters for the benefit of the farming community.

The genotypes AD 08142, CB 08504, TM 08610, CB 06651 and TNRH 206 (hybrid) can be promoted as they have yellow stem borer resistance in addition to good yield.

References

- Abdul Rehman Dhuyo. 2009. Integrated control of yellow rice stem borer *Scirpophaga incertulas* (Walker) (Lepidoptera: Pyralidae). Ph.D thesis Department of Zoology, University of Sindh, Jamshoro, Pakistan 152p.
- Chandler, R.F. 1968. The Contribution of Insect control to High Yields of Rice. Paper presented in a Symposium on The Impact Actual and Potential-of Modern Economic Entomology on World Agriculture, at the Annual Meeting of the Entomological Society of America held on 29th November 29, 1967 at New York City, 133-135.
- IRRI, 1988. Standard Evaluation System for Rice. III edition, June 1988, International Rice Testing Program, IRRI, Los Banos, Philippines.
- Khan, M., Saljoqi, A.U.R., Latif, A. and Abdullah, K. 2003. Evaluation of some rice varieties against rice stem borer. *Asian J. Plant Sci.*, **2**: 498-500.

- Khan, M., Murtaza, S. G. and Mir, H. 2010. Screening of six rice varieties against the yellow stem borer, Scirpophaga incertulas Walker. Sarhad J. Agric., 26: 591-594.
- Khan, R. A., Junaid A. Khan, Jamil, F. F. and Hamed, M. 2005. Resistance of different basmati rice varieties to stem borers under different control tactics of IPM and evaluation of yield. *Pak. J. Bot.*, 37: 319-324.
- Li, Y., Xie, R., Liu, C., Yu, X., Luo, J. and Zhu, Y.2010. Analysis of stem borer resistance and application in breeding of IR75288-38-3-1. *Southwest China J. Agric. Sci.*, **23**: 719-723.
- Marwat, N.K. and Baloch, U.K. 1985. Varietal resistance in rice to *Tryporyza* species of stem borers and its association with plant moisture, total ashes and silica contents. *Pakisthan J. Agric. Res.*, **6**: 278-281.
- Panda, N., Paradhan, B., Samalo, A.P. and Rao, P.S.P. 1977. Note on the relationship of some biochemical factors with the resistance in rice varieties to yellow rice borer. *Indian J. Agric. Sci.*, **45**: 499-501.
- Pathak, M.D., Andres, F., Galacgnac, N. and Anos, R. 1971. Resistance of rice cultivar to the striped stem borer, *Chilo suppressalis* Walker. Int. Rice Res. Inst. Tech. Bull., **11**: 9.
- Sarwar, M. 2012. Management of rice stem borers (Lepidoptera: Pyralidae) through host plant resistance in early, medium and late plantings of rice (Oryza sativa L.). J. Cereals and Oil seeds, 3: 10-14.
- Shafiq, M., Ashraf, M., Bux, M. and Tofique, M. 2000. Screening of rice genotypes for resistance to stem borers. *Pakistan J. Zool.*, **32**: 135-137.
- Subudhi, H.N., Padhi, G. and Meher, J. 2007. Evaluation of rice varieties for stem borer resistance. *J. Plt. Prot. Environ.* **4**: 113-115.

Received: July 27, 2012; Accepted: November 7, 2012