
Madras Agric.J.,2025; https://doi.org/10.29321/MAJ.10.701222                                                          

112| 4-6 |140

RESEARCH ARTICLE

Received: 18 Jun 2025

Revised: 29 Jun 2025

Accepted: 03 Jul 2025

*Corresponding author mail: sakthivel.r449@gmail.com
Copyright: © The Author(s), 2025. Published by Madras Agricultural Students’ Union in Madras Agricultural 
Journal (MAJ). This is an Open Access article, distributed under the terms of the Creative Commons 
Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution and reproduction in any medium, provided the original work is properly cited by the user.

Field-Scale Agricultural Monitoring Using Sentinel-2 and GEE: 
A Study on Cotton and Maize Crop Cycles.
Mugesh kumar Raja1, Sakthivel R2*, Geethakarthi A2

1 Department of Soil Science and Agricultural Chemistry, Dhanalakshmi Srinivasan Agriculture College, Perambalur - 
621212.
2 Department of Civil Engineering, Kumaraguru College of Technology, Coimbatore-641 049.

ABSTRACT:

Understanding crop phenology and health through the use of remote 
sensing tools has gained increasing attention in precision agriculture. 
This study focuses on a 0.5-acre agricultural plot located at Tamil Nadu 
Agricultural University (TNAU), Coimbatore, where cotton was cultivated 
from March 11, 2022, to September 23, 2022. Sentinel-2 imagery was 
processed using Google Earth Engine (GEE) to derive NDVI (Normalized 
Difference Vegetation Index) values throughout the crop growth period. A 
time series analysis of mean NDVI values was conducted to observe the 
phenological stages of the cotton crop. Post-harvest, maize was cultivated 
in the same field. An NDVI image captured during this period revealed 
spatial variability in crop health across the plot. Ground truth photographs 
confirmed that certain areas exhibited poor crop vigor, aligning with low 
NDVI values. This study demonstrates the practical application of open-
source satellite data and cloud-based platforms, such as GEE, for micro-
level crop monitoring and health assessment in precision farming practices.

Keywords: Cotton phenology, NDVI time series, Sentinel-2, Google earth engine, Crop health monitoring, 
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INTRODUCTION:

Remote sensing technologies have emerged as 
essential tools in modern agricultural monitoring, 
particularly for evaluating crop growth stages, 
detecting stress, and assessing productivity. Among 
various vegetation indices, the Normalized Difference 
Vegetation Index (NDVI) is widely used due to its 
simplicity, effectiveness, and strong correlation with 
vegetation vigor and biomass (Tucker, 1979). NDVI has 
become a standard metric for phenological studies 
across different crop types and climatic conditions.

Google Earth Engine (GEE), a cloud-based 
geospatial analysis platform, enables researchers to 
efficiently process large satellite datasets, such as 

those from Sentinel-2, at scale. Its capabilities in time 
series analysis have been beneficial for understanding 
vegetation dynamics and crop health (Gorelick et 
al., 2017; Belgiu and Csillik, 2018). The Sentinel-2 
mission, conducted by the European Space Agency, 
provides multispectral imagery at a spatial resolution 
of 10–20 m and a high temporal frequency, making it 
highly suitable for agricultural applications (Drusch et 
al., 2012).

Crop phenology, the study of plant life cycle 
events and their environmental triggers, is vital for 
managing inputs such as water, fertilizer, and labor. 
Monitoring phenological stages using NDVI time series 
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optimize harvest timing and detect growth anomalies, 
facilitating the optimization of harvest timing and the 
detection of growth anomalies (Zhang et al., 2003). 
Several studies have successfully applied NDVI time 
series from Sentinel-2 imagery to detect phenological 
patterns in crops such as cotton, maize, and rice 
(Campos-Taberner et al., 2018; Zhao et al., 2020).

In addition to phenology, NDVI has been widely 
used for assessing intra-field variability, helping 
identify spatial differences in crop health due to soil 
conditions, irrigation patterns, or pest infestations 
(Vona and De Santis, 2021). Integrating ground truth 
observations with satellite-derived NDVI enhances the 
reliability of remote assessments and strengthens 
decision support for farmers (López-Granados, 2011).

This study aims to monitor the phenological 
development of cotton crops grown in a 0.5-acre 
plot at Tamil Nadu Agricultural University (TNAU), 
Coimbatore, from March to September 2022, using 
Sentinel-2 NDVI time series derived through Google 
Earth Engine. Furthermore, the study assesses post-
harvest maize crop health using a single-date NDVI 
image validated with field-level ground truth data. 
This research highlights the feasibility of using open-
access satellite data and cloud computing platforms 
for precision farming at a micro-plot scale.

MATERIALS AND METHODS:

Study Area:

The study was conducted on a 0.5-acre agricultural 
field (Fig. 1) located within the premises of the Tamil 
Nadu Agricultural University (TNAU), situated in 
Coimbatore, Tamil Nadu, India. Geographically, the 
location lies approximately at 11.000°N latitude and 
76.935°E longitude, within the semi-arid agro-climatic 
zone of Southern India.

The region experiences a tropical climate 
characterized by hot summers, moderate rainfall, 
and mild winters. The average annual rainfall ranges 
from 600 to 800 mm, primarily received during the 
southwest monsoon (June to September). The soil in 
the study field is predominantly red loamy, suitable for 
a variety of crops, including cotton and maize.

During the study period, cotton was cultivated from 
March 11, 2022, to September 23, 2022, followed 
by maize as a short-term post-harvest crop. The 
controlled plot within a research institution enabled the 
verification of ground truth and the precise monitoring 
of crop conditions, facilitating the integration of field 
observations with satellite-derived NDVI data for 
phenological and crop health analysis.Madras Agric.J.,2025;  https://doi.org/10.29321/MAJ.10.701222                           

 
 

 

Figure 1: Study Area 

 

The region experiences a tropical climate characterized by hot summers, moderate rainfall, and 
mild winters. The average annual rainfall ranges from 600 to 800 mm, primarily received 
during the southwest monsoon (June to September). The soil in the study field is predominantly 
red loamy, suitable for a variety of crops, including cotton and maize. 

During the study period, cotton was cultivated from March 11, 2022, to September 23, 2022, 
followed by maize as a short-term post-harvest crop. The controlled plot within a research 
institution enabled the verification of ground truth and the precise monitoring of crop 
conditions, facilitating the integration of field observations with satellite-derived NDVI data 
for phenological and crop health analysis. 

 

Satellite Data Source 

This study utilized imagery from the Sentinel-2 satellite mission (Fig. 2), operated by the 
European Space Agency (ESA), which provides multispectral optical data at spatial resolutions 
of 10 m, 20 m, and 60 m across 13 spectral bands. The red (Band 4) and near-infrared (Band 
8) bands, both at 10 m resolution, were used to calculate the NDVI (Drusch et al., 2012). 
Sentinel-2’s high revisit frequency (5–10 days) makes it highly suitable for monitoring 
vegetation dynamics and phenological changes (Zhao et al., 2020; Belgiu and Csillik, 2018). 

Figure 1: Study Area
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Satellite Data Source

This study utilized imagery from the Sentinel-2 
satellite mission (Fig. 2), operated by the European 
Space Agency (ESA), which provides multispectral 
optical data at spatial resolutions of 10 m, 20 m, and 
60 m across 13 spectral bands. The red (Band 4) and 
near-infrared (Band 8) bands, both at 10 m resolution, 
were used to calculate the NDVI (Drusch et al., 2012). 
Sentinel-2’s high revisit frequency (5–10 days) makes 
it highly suitable for monitoring vegetation dynamics 
and phenological changes (Zhao et al., 2020; Belgiu 
and Csillik, 2018).

                 

Figure 2. methodology.
Platform and Tools

All remote sensing analyses, including image 
preprocessing, cloud masking, NDVI computation, 
and time series plotting, were conducted using Google 
Earth Engine (GEE). GEE is a cloud-based geospatial 
processing platform that facilitates large-scale 
environmental data analysis with integrated satellite 
image archives and APIs for JavaScript and Python 
(Gorelick et al., 2017).

NDVI Computation

NDVI (Normalized Difference Vegetation Index) is 
computed using the standard equation:

NDVI=(NIR−RED) / (NIR+RED)

Where NIR refers to reflectance in the near-infrared 
band (Band 8) and RED corresponds to reflectance in 

the red band (Band 4) of Sentinel-2. NDVI is widely 
used to assess vegetation greenness and is directly 
correlated with crop health and photosynthetic activity 
(Tucker, 1979; Campos-Taberner et al., 2018).

Time Series Analysis

NDVI values were extracted for the 0.5-acre cotton 
field from March 11, 2022, to September 23, 2022, 
aligning with the cotton crop cycle (Fig. 2). A region of 
interest (ROI) polygon was digitized in GEE to clip the 
imagery. NDVI values were averaged over this ROI for 
each available Sentinel-2 image. A time series chart 
was generated to visualize NDVI variations, reflecting 
different phenological stages, including emergence, 
vegetative growth, flowering, and senescence (Zhang 
et al., 2003; Dash et al., 2023).

Post-Cotton NDVI Assessment

After the cotton harvest, a single-date NDVI image 
was generated during the early growth stage of the 
subsequent maize crop. This image revealed spatial 
variability in vegetation health. Visual interpretation 
and pixel-wise NDVI comparisons indicated low values 
in specific areas, suggesting poor crop establishment. 
This was further verified through ground-truth 
photographs, which showed reduced plant vigor in 
those parts of the field (Vona and De Santis, 2021; 
López-Granados, 2011).

Cloud Masking and Preprocessing

To ensure accuracy in NDVI estimation, Sentinel-2 
Level-1C images were subjected to cloud masking 
using the Scene Classification Layer (SCL) and QA60 
band in GEE (Sibanda et al., 2022). Only cloud-free 
images were included in the analysis to avoid distortion 
in spectral reflectance values.

RESULTS AND DISCUSSION:

Cotton NDVI Time Series Analysis

The NDVI time series derived from Sentinel-2 
imagery effectively captured the phenological 
development of the cotton crop grown between March 
11, 2022, and September 23, 2022. As illustrated in 
Figure 3, the NDVI values showed a gradual increase 
from mid-March, indicating the emergence and early 
vegetative growth of cotton. The values peaked during 
mid-July to early August, corresponding to the flowering 
and boll formation stages, with NDVI values exceeding 
0.35, which is typical of dense, healthy cotton canopies 
(Zhao et al., 2020; Zhang et al., 2003).



Madras Agric.J.,2025; https://doi.org/10.29321/MAJ.10.701222                                                          

112| 4-6 |143

Following this peak, a decline in NDVI was observed 
toward late September, signaling crop maturity and 
senescence. This temporal pattern aligns with cotton 
crop development cycles reported in other studies 
using time-series NDVI analysis (Campos-Taberner et 
al., 2018; Dash et al., 2023). The cloud-masking and 
data filtering techniques applied in GEE ensured that 
only high-quality observations were retained, resulting 
in a clear seasonal signal with minimal noise.

Maize Crop Health Assessment Using NDVI

Post-harvest, the field was replanted with maize. 
A single-date NDVI image acquired on February 17, 
2023, was used to evaluate maize crop health across 
the same plot. The processed NDVI image is shown 
in Figure 4. The image reveals noticeable spatial 
variability in vegetation health, with distinct zones of 
high NDVI (values > 0.3) in some portions of the field 
and lower NDVI (< 0.3) in others.

These low-NDVI zones suggest poor crop 
establishment, possibly due to inadequate soil 
moisture, pest damage, or nutrient deficiencies—
conditions commonly reflected in spectral vegetation 
indices (Vona and De Santis, 2021). The interpretation 
was validated using ground truth photographs, which 
visually confirmed stunted growth and sparse plant 
cover in the affected areas. This demonstrates the 
reliability of NDVI as an early indicator of within-field 
variability and crop stress (López-Granados, 2011).

Moreover, the ability to detect such variability 
through remote sensing can enable site-specific 
interventions, such as targeted irrigation or soil 
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Figure 3: NDVI time series trend for cotton crop (March–September 2022). 
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interventions, such as targeted irrigation or soil treatment, thereby improving overall 
productivity. Studies have emphasized the role of high-resolution NDVI imagery from 
Sentinel-2 in guiding precision agriculture practices even at small plot scales (Belgiu and 
Csillik, 2018; Gorelick et al., 2017). 

Figure 3: NDVI time series trend for cotton crop (March–September 2022).

treatment, thereby improving overall productivity. 
Studies have emphasized the role of high-resolution 
NDVI imagery from Sentinel-2 in guiding precision 
agriculture practices even at small plot scales (Belgiu 
and Csillik, 2018; Gorelick et al., 2017).

CONCLUSION:

This study demonstrated the effective use of 
Sentinel-2 satellite imagery and Google Earth Engine 
(GEE) for monitoring crop phenology and evaluating 
intra-field crop health in a small-scale agricultural 
plot. The NDVI time series provided valuable insights 
into the cotton crop’s growth stages, from emergence 
to senescence, aligning well with ground-based 
observations. Such temporal vegetation profiles are 
crucial for understanding crop development and 
optimizing input management in precision agriculture.

Furthermore, post-harvest assessment of maize 
crop health using a single-date NDVI image successfully 
identified spatial variability within the field. The 
unhealthy zones identified through low NDVI values 
were verified with ground photographs, reinforcing the 
reliability of remote sensing in detecting early signs of 
crop stress.

This work underscores the potential of open-access 
satellite data and cloud-based analysis platforms for 
smallholder and research farm applications. With 
minimal cost and technical infrastructure, even micro-
scale farms can adopt remote sensing techniques to 
improve decision-making and yield.
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Figure 4: NDVI image of maize crop field showing healthy (green) and unhealthy (red) 
vegetation zones (17 February 2023). 

 

Conclusion: 

This study demonstrated the effective use of Sentinel-2 satellite imagery and Google Earth 
Engine (GEE) for monitoring crop phenology and evaluating intra-field crop health in a small-
scale agricultural plot. The NDVI time series provided valuable insights into the cotton crop's 
growth stages, from emergence to senescence, aligning well with ground-based observations. 
Such temporal vegetation profiles are crucial for understanding crop development and 
optimizing input management in precision agriculture. 

Furthermore, post-harvest assessment of maize crop health using a single-date NDVI image 
successfully identified spatial variability within the field. The unhealthy zones identified 
through low NDVI values were verified with ground photographs, reinforcing the reliability of 
remote sensing in detecting early signs of crop stress. 
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