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ABSTRACT

Many microorganisms inhabit and interact with plants and play a 
significant role in improving overall productivity and sustainability. Among 
the microorganisms, bacteria contribute more to fostering plant growth 
and development. They are collectively known as Plant Growth Promoting 
bacteria (PGPRs). Methylorubrum is one such group of bacterial genera 
that has both plant growth-promoting ability and abiotic stress mitigation. 
Methylorubrum, a member of alpha-proteobacteria, is ubiquitous and can 
colonize the entire plant system, gaining significant importance in crop 
production due to its multifaceted abilities. Due to their pink pigmentation, 
members of the Methylorubrum genus are collectively known as Pink 
Pigmented Facultative Methylotrophs (PPFM).  They improve plant 
growth through mineral solubilisation, phytohormone production, ACC 
deaminase, and siderophore production. Methylorubrum with potential 
applications in agriculture can be used as a bio stimulant, biofertilizer, 
and biocontrol agent. This review provides thoughtful insights into the 
multidimensional role of Methylorubrum in sustainable agriculture.
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INTRODUCTION

Crops face many environmental challenges, 
both biotic and abiotic stress, including extreme 
temperatures, salinity, drought, pest and disease 
incidence, and nutrient deficiencies that significantly 
impede the growth and development of crops. Global 
warming and an increase in population pose a global 
threat to food security. Due to climate variability, 
global food production has already decreased 
(Tito et al., 2018). As a result of global warming, 
irregular rainfall pattern, high and low temperature 
stress, drought stress, UV stress, and elevated CO2 
levels significantly reduces crop growth and alter 

their physiology (Madhaiyan et al., 2007a; Jinal et 
al., 2019; Gopi et al., 2020). Due to the intricate 
nature of stress tolerance, employing conventional 
breeding techniques to develop crops with strong 
stress resistance is impossible. Plants developed 
sophisticated mechanisms to reduce the impacts 
to adapt to unfavourable stress conditions. The 
mechanisms include physiological, biochemical, and 
molecular changes that help plants maintain cellular 
homeostasis and ensure survival.  In recent years, the 
usage of plant growth-promoting microorganisms has 
emerged as a sustainable approach to improve plant 
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productivity and resilience under both normal and 
stress conditions (Vandenkoornhuyse et al., 2015). 

Plants are not a single entity, but a host of diverse 
groups of microorganisms that provide both beneficial 
and detrimental effects through a diverse relationship, 
including commensal, symbiotic, parasitic, and 
mutualistic relationships that shape the productivity of 
crops (Krishnamoorthy et al., 2021; Rani et al., 2021). 
The microorganisms that can promote plant growth is 
known as Plant Growth Promoting bacteria (PGPBs). 
Among these PGPBs, Methylorubrum, a genus of 
pink-pigmented, facultative methylotrophic bacteria, 
able to colonise the phyllosphere, are commonly 
known as pink pigmented facultative methylotrophs 
(PPFMs) (Fig.1). Methylorubrum has gained major 
attention due to its significant potential in mitigating 
abiotic stress and improving plant growth.  These 
plant-associated microbes help plants to withstand 
abiotic stress through several mechanisms, including 
ACC-deaminase production, phytohormones (auxin, 
cytokinin) synthesis, and by producing free radical 
scavenging enzymes (Prittesh et al., 2020). In the 
face of climate change and increasing abiotic stress, 
the role of Methylorubrum is crucial in improving 
plant growth and stress mitigation for sustainable 
agriculture practices. Due to their versatile capabilities, 
inoculating Methylorubrum alone or in combination, 
is a valuable tool to improve plant growth and yield. 
Maintenance of proper plant–microbiome interactions 
minimizes the use of hazardous agrochemicals 
and fosters sustainable agriculture practices  
(Delmotte et al., 2009).

Taxonomy

In 2018, Green and Ardley divided Methylobacterium 

into two genera, Methylobacterium and Methylorubrum. 
Based on phenotypic traits, 16s rRNA, multilocus 
sequence analysis (MLSA), 11 species were included 
in the genus Methylorubrum, including Methylorubrum 
extorquens, M. aminovorans, M. podarium, M. populi, 
M. pseudosasae, M. rhodesianum, M. rhodinum, M. 
salsuginis, M. suomiense, M. thiocyanatum, and M. 
zatmanii. (Green and Ardley, 2018).

Ecology

Methylorubrum is a genus of facultative 
methylotrophs with diverse ecological adaptability. 
They are ubiquitous, thriving in diverse niches, 
including water, soil, plants, animals and contaminated 
environments (Madhaiyan et al., 2007b). Their ability 
to utilize one-carbon compounds as a carbon source 
helps them to survive in unfavourable conditions. 
The ability of Methylorubrum to utilize single-
carbon compounds like methanol, methylamine, its 
ecological adaptability, and metabolic versatility make 
it a valuable component in sustainable agriculture, 
bioprocessing and pollution abatement (Schauer 
et al., 2011; Green et al., 1988). It plays a crucial 
role in the global carbon cycle by recycling single-
carbon compounds. Diversity of Methylorubrum 
in various environments was presented in Table 1  
(Danko et al., 2021).

Metabolism of single-carbon compounds

Methylotrophs are a group of microorganisms 
that can utilize single–carbon compounds such as 
methanol, methylamine, or formate as a primary 
carbon source. Methanol dehydrogenase (MDHs) is 
the key enzyme that catalyses methanol oxidation 
to generate formaldehyde with hydrogen ions 
and electrons (Zhang et al., 2017). This produced 
formaldehyde enters the cell and it is assimilated 
through any one of the following pathways – (i) 
Serine Cycle, (ii) Ribulose monophosphate cycle, 
(iii) Xylulose monophosphate cycle (Zhang et al., 
2017). In most cases, Methylorubrum employs the 
serine cycle for the assimilation of formaldehyde 
through a series of complex biochemical reactions 
that convert formaldehyde into building blocks of the 
cell and energy production. This pathway also helps 
Methylorubrum to produce vital nucleic acids, lipids, 
and amino acids from the single–carbon compound 
methanol. Through these metabolic capabilities, 
Methylorubrum thrives in diverse environments and 
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Table 1 Diversity of Methylorubrum in diverse environments

Environment Species References
Air Methylobacterium extorquens (Green and Ardley 2018)

Soil Methylobacterium populi (Van Aken et al., 2004)
Methylobacterium suomiense f20 (Doronina et al., 2002), 

Methylobacterium pseudosasae (Madhaiyan and Poonguzhali 
2014)

Plants Methylobacterium rhodinum (Green and Bousfield, 1983)
Animals Methylobacterium zatmanii (Green et al., 1988) 
Contaminated soils Methylobacterium suomiense (Doronina et al., 2002)

Methylobacterium thiocyanatum  (Wood et al., 1998)

Manufactured structures (Buildings, 
tap water showers)

Methylobacterium zatmanii (Kelley et al., 2004)

Methylobacterium extorquens (Szwetkowski and Falkinham Iii, 
2020)

Hydrocarbon-contaminated sites Methylobacterium populi (Ventorino et al., 2014)
Methylobacterium thiocyanatum (Ventorino et al., 2014)

Outer space Methylobacterium extorquens (Novikova et al., 2006)

establishes beneficial interactions with plants, which 
fosters plant growth and enhances stress tolerance. 
This capability helps Methylorubrum to stand out 
among the other microorganisms. In addition to 
single carbon assimilation, they play a crucial role 
in mineral solubilisation and plant nutrient uptake. 
Another essential micronutrient of plants that plays 
a crucial role in the physiological processes of plants 
is iron. Plant Growth Promoting microorganisms 
produce siderophores, a specific type of molecules 
that enhance iron bioavailability for uptake  
(Verma et al., 2017).

Plant Growth-Promoting Mechanisms

Methylorubrum employs diverse mechanisms both 
directly and indirectly to promote plant growth and 
improve crop productivity (Madhaiyan et al., 2006). 
Some direct mechanisms include auxin and cytokine 
production and mineral solubilisation. Phytohormones 
regulate plant growth and development. Producing 
indole acetic acid (IAA), a type of auxin essential for 
cell elongation and root development, promotes 
plant growth. On the other hand, cytokinins promote 
cell division, rejuvenate cells, and increase shoot 
proliferation and biomass (Verma et al., 2017). 

The production of organic acids, such as 
gluconic acid, through metabolism, helps the 
bacteria to solubilize the insoluble phosphorus 
from an unavailable form to an available form  

(Kwak et al., 2014). Iron is an essential micronutrient 
for plants, promoting plant photosynthesis and 
chlorophyll synthesis. Methylorubrum enhances iron 
absorption through the production of siderophores (Shi 
et al., 2012). Siderophores are iron-chelating organic 
compounds that bind with the unavailable form of 
iron and convert it into an available form (Ahmed and 
Holmström, 2014). 

Methylorubrum also suppresses the phytopathogens 
by producing antimicrobial compounds and volatile 
compounds that inhibit the multiplication and activity 
of various bacterial and fungal pathogens. They also 
induce systemic resistance in plants by activating 
plant defence genes and producing defence-related 
enzymes, such as peroxidase and chitinase, which 
help plants respond more effectively in the event of 
pathogen attacks. Methylorubrum species promote 
plant growth through both direct and indirect pathways 
(Kazan, 2015).

Phytohormone Production and Regulation
•	 Auxins: Methylorubrum can synthesize auxins, 

such as indole-3-acetic acid, which plays a vital 
role in cell elongation, root development and 
apical dominance (Mano and Nemoto, 2012). 
Increased auxin levels stimulate cell division 
and differentiation, leading to enhanced root 
and shoot growth (Ivanova et al., 2001).
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•	 Cytokinins: Some Methylorubrum strains 
produce cytokinin, which promote cell division, 
rejuvenate cells, and enhance plant nutrient 
mobilization (Holland and Polacco, 1992). 
Cytokinin interacts with auxins to regulate 
various developmental processes.

•	 Ethylene Regulation: Methylorubrum can 
modulate ethylene levels in plants by producing 
ACC deaminase. ACC deaminase breaks the 
1-Aminocyclopropane-1-carboxylic acid (ACC), 
the precursor to ethylene, into ammonia and 
alpha-ketoglutaric acid, thereby reducing 
ethylene levels and mitigating its inhibitory 
effects under stress conditions (Madhaiyan et 
al., 2006).

Nutrient Acquisition 
•	 Nitrogen Fixation:

Nitrogen-fixing microorganism can convert 
atmospheric nitrogen into ammonia (Singh et al., 
1981). Using these nitrogen-fixing bacteria reduces 
the necessity of synthetic nitrogen fertilizers. 
Methylorubrum rhodesianum has the potential to 
convert atmospheric nitrogen into ammonia; thereby 
increasing the availability of nitrogen, a crucial nutrient 
for plant growth (Sy et al., 2001).

•	 Phosphate Solubilization 
Plants take up phosphorus as orthophosphate 

ions; however, in soil, based on the pH, phosphorus 
exists in insoluble forms, such as calcium phosphate or 
aluminium/iron phosphate (Tang et al., 2023). Through 
producing organic acid, acid and alkyl phosphatase, 
phytase enzyme Methylorubrum converts insoluble 
phosphorus into a soluble organic form. Several 
phosphorous solubilising Methylorubrum strains were 
isolated and listed in table 3, highlighting their role in 
sustainable agriculture. 

•	 Siderophore Production: 
Iron is a vital micronutrient mainly available in two 

oxidation forms, Fe3+ (soluble) and Fe2+ (insoluble) 
in soil (Shi et al., 2012). The ferric form of iron is 
insoluble, making iron acquisition a challenge for 
plants. Under iron-limiting conditions, microorganisms 
secrete siderophores, an iron-chelating compound 
that enhances iron uptake. Several strains that can 
produce siderophores are presented in the table 3.

Abiotic stresses
The Methylorubrum genus has a remarkable ability 

to mitigate several abiotic stresses, including high and 
low temperature stress, drought, salinity, and heavy 
metal toxicity. Abiotic stresses significantly reduce the 
growth and development of plants, which can cause 
major yield loss and productivity. Plants associated with 
a beneficial microbiome are the basic line of defence 
against any abiotic stresses, especially Methylorubrum 
association, which mitigates the unfavourable effects 
of all abiotic stress through several mechanisms. 
These mechanisms include increased accumulation of 
osmolytes and antioxidant enzymes, promote nutrient 
uptake, protection against phytopathogens, and alter 
the ethylene level through ACC-D production. Figure 
2 depicts the potential of Methylorubrum in abiotic 
stress mitigation.

Drought stress 
Drought stress triggers many physiological and 

biochemical changes in plants, including reduced 
water uptake, decreased photosynthesis, and 
increased oxidative stress. During abiotic stress, 
plants accumulate the excess amount of ethylene 
and ROX; alter DNA, RNA, proteins, phytohormones 
accumulation, osmolytes content, stomatal closure, 
and reduce transpiration (Silva et al., 2020).. There 
are several reports of Methylorubrum species, such 
as M. populi, M. aminovorans and M. extorquens, 
that have been reported to help plants survive under 
abiotic stress conditions.

Salinity stress 
Regular irrigation of the field with salt water and sea 

Table 2. Stress adaptive Methylorubrum with multifarious PGP attributes for alleviation of diverse 
abiotic stresses in plants (P- Phosphate solubilization; IAA- Indole acetic Acid production; Fe- 
Siderophores production; ACC- ACC deaminase production

Methylorubrum P IAA Fe ACC Reference
Methylorubrum  populi TNAU 1 - - - + (Raja et al., 2006)
Methylorubrum  extorquens G10 + - - - (Agafonova et al., 2013)
Methylorubrum  extorquens IIWP - 43 + + + - (Agafonova et al.. 2013)
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water intrusion develops saline conditions. There are 
three different salt-affected conditions- saline, sodic, 
and alkaline. Saline condition refers to increased 
accumulation of soluble salts. Alkalinity describes soil 
conditions characterised by increased accumulation 
of carbonate and bicarbonate ions. Sodic soils have 
increased exchangeable sodium accumulation, 
affecting water and air movement. All the critical 
growth stages of a plant are highly susceptible to salt 
stress (Kumar et al., 2015; Sorty et al., 2016; Mishra 
et al., 2016). Salinity stress significantly threatens 
agriculture, particularly in arid and semi-arid regions. 
High salt concentrations in the soil can disrupt plant 
water uptake, nutrient balance, and enzyme activity. 
Accumulation of salts reduces the water potential in 
the soil and causes water to move out of the plant cell 
to the soil (Egamberdieva et al., 2015).

UV stress

Ozone layer depletion due to anthropogenic 
greenhouse gas emissions increases UV exposure, 
which has a significant impact on plants. UV radiation 
causes DNA damage, reduces photosynthesis, 
and increases oxidative stress (Sage et al., 2012). 
UV-B causes nucleoprotein damage. Generates 
DNA photoproducts, oxidises the plant tissues, and 
reduces their survival rate (Kosobryukhov et al., 
2020).  Methylorubrum protects plants through 
various protective mechanisms, including astaxanthin 
pigments and ergothioneine accumulation, which 
can absorb UV radiation and thereby reduce damage 
(Bazela et al., 2014). 

Mechanism of abiotic stress mitigation by 
Methylorubrum

•	 ACC Deaminase Production

Ethylene at lower concentrations promotes root 
extension, whereas high concentration inhibits 
root elongation. Under abiotic stress conditions, 
the endogenous level of ethylene increases 
significantly. Ethylene, as a stress hormone, can 
intensify the adverse effects of drought (Glick, 1995). 
Methylorubrum helps plants reduce ethylene levels 
and maintains better growth and water use efficiency 
under drought conditions. Through the production of 
ACC deaminase, Methylorubrum reduces ethylene 
levels in plants by converting the precursor of ethylene, 
ACC, into ammonia and alpha-ketoglutarate (Hardoim 
et al., 2008).   

•	 Osmolytes accumulation

Osmolytes are solutes that accumulate in plants 
to reduce cell damage caused by oxidative stress 
(Sharma et al., 2019). Glycine betaine, proline, 
polyamines, and sugars are some osmolytes that 
can reduce the osmotic pressure induced by abiotic 
stress conditions. Plants treated with Methylorubrum 
spp. have increased accumulation of osmolytes 
like glycine betaine, proline and sugars, which help 
plants maintain osmotic balance under abiotic stress. 
Osmolytes protect cellular structures and enzymes 
from damage caused by dehydration (Chandrasekaran 
et al., 2017). 

•	 Stomatal Regulation

Stomata are minute pores on the leaf surface 
that regulate gas exchange and water loss. Guard 
cells control the opening and closure of stomata. 
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In abiotic stress conditions, plants accumulate 
abscisic acid (ABA), which in turn closes the stomatal 
pore (Daszkowska-Golec and Szarejko, 2013).  
Methylorubrum plays a significant role in stomatal 
regulation through direct and indirect strategies 
to maintain water balance and gas exchange. 
Production of ACC deaminase reduces ethylene levels 
and enhances photosynthesis and water retention 
(Sivakumar et al., 2017). Accumulation of proline and 
glycine betaine maintains turgor pressure and osmotic 
stability. In the direct mechanism, Methylorubrum 
releases volatile organic compounds that activate 
defense phytohormones like salicylic acid and 
jasmonic acid, in turn triggering the opening of stomata 
through the OST1 signal cascade. It also modulates 
ion channels, transporters, and signalling proteins 
through gene expression (Krishnamoorthy, 2020). 
Opening of stomata reduces the leaf temperature, 
thereby reducing the adverse effects of the drought 
(Rajagopalan, 1956).

•	 Increased antioxidant enzyme activity

Abiotic stress conditions enhance the production 
of reactive oxygen species (ROS), such as singlet 
oxygen, superoxide radical, hydrogen peroxide, 
and hydroxyl radical (Sivakumar et al., 2017). Low 
quantities of these ROS can be easily balanced by 
antioxidant enzymes. However, in abiotic stress 
conditions, these molecules levels increase and result 
in oxidative damage. Accumulation of ROS leads to 
oxidative damage, causes protein degradation, lipid 
peroxidation, and membrane disruption. Antioxidant 
enzymes such as peroxidase, superoxide dismutase, 
catalase and ascorbate peroxidase neutralize the 
ROS. Application of Methylorubrum enhances plant 
defence by upregulating the antioxidant-related genes 
and increasing the antioxidant enzyme activity, thereby 
facilitating ROS detoxification (Chandrasekaran et al., 
2017).

Synergistic Effects and Multi-Stress Tolerance

In natural environments, plants often face multiple 
stresses. The application of Methylorubrum spp. 
with plant growth-promoting capabilities has several 
beneficial effects on plants.

•	 Reduced reliance on synthetic chemical 
fertilizers: Enhance nutrient availability and 
promote plant growth, Methylorubrum reduces 
the application of synthetic fertilizers, minimizes 
environmental pollution, and promotes soil health.

•	 Improved crop yields: Methylorubrum can 
enhance crop yields under normal and stressful 
conditions, contributing to food security and 
economic benefits for farmers.

•	 Sustainable stress management: 
Methylorubrum reduces the deleterious effects 
of abiotic stresses, contributes to sustainable 
agriculture in the face of global warming 
and increasing environmental pressures 
(Chandrasekaran et al., 2017).

CONCLUSION

Methylorubrum spp. is a group of plant growth-
promoting bacteria that play a crucial role in sustainable 
agriculture.  Accumulation of osmolytes like proline 
and glycine betaine maintains the cell turgor pressure. 
It maintains the osmotic balance, increased activity of 
antioxidants reduces the deleterious effects of reactive 
oxygen species, and production of phytohormones 
like auxin and cytokinin increases shoot and root 
growth. These abilities of Methylorubrum to produce 
phytohormones, enhance nutrient availability, and 
improve stress tolerance make them a multifaceted 
candidate for improving plant growth and stress 
resilience.  Methylorubrum supports plant resilience 
against adverse conditions, contributing to sustainable 
yield. This symbiotic relationship with plants minimizes 
reliance on chemical fertilizers and promote eco-
friendly crop management strategies.
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