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ABSTRACT 

Climate change is leading to rising global temperatures, causing shifts 

in weather patterns and more frequent extreme heat events. These 

temperature shifts disrupt plant growth and development, threatening 

global ecosystems and food security. Finger millet is a climate-resilient 

crop, gaining attention for its relative ability to tolerate high temperatures 

and drought conditions compared to other cereal food crops, but yield 

improvement is stagnated. The newer sources of stress tolerance in finger 

millet can be obtained through the development of Recombinant Inbred 

Lines (RIL’s). In the present study, 222 RIL’s (F6) developed for 

thermotolerance were screened using Temperature induction response 

(TIR). The study revealed wide variability in the seedling traits such as 

seedling survival (%), reduction in the shoot, root, and total seedling 

length (%), as well as the seedling vigour index (SVI). By employing the 

standardized Z distribution, the RIL’s were categorized into tolerant and 

susceptible based on the percent seedling survival and percent reduction 

in recovery growth. Five RIL’s viz. 6.1.11, 6.5.10, 6.12.5, 6.13.8, and 

6.20.24 were identified as tolerant while five viz. 6.3.2, 6.4.12, 6.7.2, 

6.10.14 and 6.17.8a were recognized as susceptible. The identified RILs 

can be further used as donor source for crop improvement studies. 
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INTRODUCTION 

According to model-based predictions for climate 

change, the average global surface air temperatures 

are likely to increase by 4.0-5.8oC by 2100. In India, 

the average increase in temperatures from 1901 till 

2018 was 0.7oC and expected to rise by 4.4oC by 

the end of the 21st century (Krishnan et al., 2020). 

Higher atmospheric temperatures often associated 

with heat waves pose a significant challenge to 

plant growth and development (http://climate.ec.), 

especially in the arid and semi-arid regions of the 

world (Varun et al., 2023). Among the key 

physiological processes, chlorophyll synthesis, RUBP 

carboxylase, carbonic anhydrase and 

photosynthesis are more affected (Prasad and 

Djanaguiraman, 2011; Opole et al., 2018; Ignatova 

et al., 2019) which in turn leads to decreased 

growth rate and yield of crops (Fahad et al., 2017). 

However, the response and susceptibility of plants 

to high temperatures vary between genotypes and 

developmental stages (Bita and Gerats, 2013; 

Wahid et al., 2007). 
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To meet the increasing demand for food 

production under changing climatic conditions, a 

careful selection of climate-resilient crops is 

mandatory. Finger millet is one such climate-resilient 

crop able to tolerate harsh weather conditions like 

high temperatures and low soil moisture conditions 

(Gupta et al., 2017). Despite the possibility of having 

newer sources of abiotic stress tolerance traits among 

the finger millet germplasm, the time and ease of 

access could impede the progress. Therefore, using a 

stable population derived specifically for high-

temperature tolerance through recombination 

breeding could be more suitable for evaluation (Anil 

and Nanja Reddy, 2023). 

Plants adapt to heat stress by an inherent basal 

level tolerance and through acquired tolerance from 

severe temperature stress. Acquired thermotolerance 

is fast and induced by cell acclimation to moderate 

high temperature (HT) periods (Hikosaka et al., 2006), 

which can be assessed at the seedling stage itself 

using a screening technique called temperature 

induction response (TIR). It has been used as an 

efficient screening technique to identify high- 
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temperature tolerant genotypes in millets like finger 

millet (Sujatha et al., 2018; Bhavana et al., 2019) 

and foxtail millet (Bheemesh et al., 2018) apart 

from other cereals and pulses. The best-

characterized aspect of acquired thermotolerance is 

the production of heat shock proteins (HSP’s) which 

confer thermotolerance through an acclimation 

process (Bourgine and Guihar, 2021). 

It is imperative that such methods be used for 

the identification of abiotic stress-tolerant crop 

lines. Therefore, in the present study, we screened 

222 RIL’s using the TIR technique followed by a 

statistical tool, the standardized Z distribution to 

identify the RIL’s with contrasting responses for high 

temperature. 

MATERIAL AND METHODS 

A recombinant inbred line population consisting 

of 222 lines (F6 generation) was screened at the 

seedling level for HT tolerance based on a 

standardized technique called temperature 

induction response (TIR). Parents of this population 

were temperature-tolerant PR-202 and susceptible 

KJNS-46, developed for chlorophyll and grain yield. 

The induction and lethal temperatures used for the 

present study were 28-53oC for 5 hours and 53oC 

for 3 hours, respectively (Vinaykumar, 2015). 

The seeds were soaked overnight and placed on 

a Petri plate lined with two layers of blotting paper 

for 48 hours to achieve seed germination. From 

these, 14 uniform seedlings of approximately 1 cm 

in length were placed in aluminum trays lined with 

two layers of blotting paper wetted sufficiently. Such 

plates were exposed to induction cum lethal 

temperature, wherein the temperature was 

gradually increased from 28oC to 53oC for 5 hours 

followed by exposure to lethal temperature of 53 oC 

for 3 hours in TIR chamber. The RH inside the TIR 

chamber was 65%. In the control, the plates were 

kept at an ambient temperature of 28oC with 65% 

RH throughout the experimental period (Figure 1). 

At the end of the temperature treatment, 

aluminum plates were removed from the TIR 

chamber, added adequate quantity of water, and 

kept under ambient room conditions for 72 hours 

for recovery of growth. Following this, observations 

were recorded on seedling survival, root length, and 

shoot length. The seedling vigour index and percent 

reduction in the root, shoot and total seedling 

length was calculated as per the following formula. 

i) Seedling 

survival (%) = 

No. of seedlings 

survived at the end of 

recovery x 100  

(1) Total number of 

seedlings placed in the 

tray 

 

ii) % 

Reduction in 

seedling 

growth = 

Observed length in 

Control – Observed 

length in Induction 
x 100  

(2) 
Observed length in 

Control 

iii) Seedling 

Vigour 

Index (SVI) = 

Germination percent x 

Seedling length 
(3) 

 

After recording the data of 222 RILs, the data was 

subjected to standardized normal Z distribution to 

classify the RIL’s into tolerant and susceptible, based 

on seedling survival and the percent reduction in 

recovery growth of seedling. The values of percent 

seedling survival and percent reduction in recovery 

growth were transformed to generate standardized 

normal distribution values (Z-values) and plotted 

against each other. Based on the Z-values, the lines 

with higher seedling survival with less percent 

reduction in recovery growth were selected as tolerant 

RIL’s whereas, those exhibiting a lower seedling 

survival with higher percent reduction in recovery 

growth rate were selected as susceptible RIL’s for 

heat stress (Srikanthbabu et al., 2002). 

The Z-values for different parameters were 

computed as 

Z-value = 

Individual mean – Overall mean 

          Standard deviation 

The statistical design adopted was completely 

randomized design with two treatments in three 

replications. All statistical analysis was carried out in 

the software OPSTAT (Sheoran et al., 1998) and the 

normal Z distribution graph was plotted in Microsoft 

Excel. 

 

Figure 1. Schematic representation of temperature 

induction response (TIR) protocol used to assess the 

thermotolerance of RIL’s 
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RESULTS AND DISCUSSION  

Genetic variability for seedling traits in the 

population 

Based on the identified induction and lethal 

temperatures, a population consisting of 222 RIL’s 

was screened for seedling traits such as seedling 

survival (%), reduction in the shoot, root, and total 

seedling length (%) as well as Seedling Vigour Index 

(SVI).  

Seedling survival (%): The seedling survival 

ranged from 50.0% to 96.4% with a mean of 83.9% 

across 222 RIL’s of finger millet (Table 1), implying 

that the induction temperature led to acclimation of 

seedlings to high temperature. Similar variability 

from 72% to 100% (Sujatha et al., 2018), 55% to 

100% (Bhavana et al., 2019) in finger millet, 70% to 

100% in foxtail millet (Bheemesh et al., 2018), 30% 

to 88% in rice (Vijayalakshmi et al., 2015) has been 

reported. This variability in seedling survival is 

mainly due to the differential expression of stress-

responsive genes during the sub-lethal induction 

stress that would bring the required changes in the 

plant metabolism necessary for withstanding the 

subsequent severe lethal stress (Senthil Kumar et 

al., 2003; Ahanger et al., 2017).  

Reduction in shoot length (%): The percent 

reduction of shoot length over control varied from 

1.24% to 83.4%, with a mean of 44.9% (Table 1). 

The percent reduction of total seedling length 

ranged from 9.0% to 78.9%, with a mean of 58.4% 

over control. Similar to the variability shown by the 

RIL’s for seedling survival, there is significant 

variability noticed for total seedling growth on 

exposure to HT compared to control conditions in 

many crops, which varied from -23.54 to 38.70% 

(Sujatha et al., 2018) and 0.55 to 89.47% 

(Bhavana et al., 2019) in finger millet, 7-18% in 

foxtail millet (Bheemesh et al., 2018), 7.56 to 

51.09% in rice (Vijayalakshmi et al., 2015). 

Reduction in root length (%): In the present 

study, wide variability in root length from 17.7% to 

88.3% was observed, with a mean of 66.5% (Table 

1) among the RIL’s of finger millet. Earlier reports 

also showed similar reduction in root length with 

induction temperature, which ranged from 6.74 to 

90.22 % in finger millet (Bhavana et al., 2019), 2 to 

72% in foxtail millet (Bheemesh et al., 2018), -36 to 

53.3% in rice (Wahab et al., 2020) and -47.05 to 

42.85% in finger millet (Sujatha et al., 2018). This 

indicates the existence of wide genetic variability for 

acquired thermotolerance among the RIL population 

(Reshma et al., 2021). 

 

 

Seedling Vigour Index (SVI): SVI is the quality 

parameter that needs to be measured to supplement 

the germination in any crop. The advantages of high 

seedling vigour are most apparent in early seedling 

growth and are often associated with a rapid rate of 

emergence and crop stand establishment (Kumar et 

al., 2006). The Seedling Vigour Index (SVI) in the 

present study ranged from 72.9 to 579 with a mean 

of 238 (Table 1), which is due to large variability in 

seed survival and seedling length as these two are the 

components of seedling vigour.  

Overall study indicates the existence of wide 

variability for the percent seedling survival, percent 

reduction in shoot length, root length, total seedling 

length, and seedling vigour index among the 222 RIL’s 

of finger millet. These variations are mainly due to the 

acclimation of these RIL’s to HT, indicating the ability 

of acquired thermo tolerance to provide an 

opportunity for selection (Mishra et al., 2020; 

Reshma et al., 2021). 

Identification of contrasting RIL’s based on TIR study 

The standardized normal Z distribution is an 

efficient tool employed to cluster the genotypes/ RIL’s 

into different groups (susceptible and tolerant) based 

on the percent seedling survival and the percent 

reduction in recovery growth under induction 

temperature over the control (Srikanthbabu et al., 

2002; Bhavana et al., 2019; Kokkanti et al., 2019; 

Chaudhary et al., 2020). The RIL’s having a higher 

seedling survival with a lesser percent reduction in 

recovery growth are considered tolerant; and the RIL’s 

with a lower seedling survival percentage and having 

a higher percent reduction in recovery growth are 

considered susceptible to high temperature (Figure 2). 

Accordingly, the RIL’s identified as tolerant are 6.1.11, 

6.5.10, 6.12.5, 6.13.8, and 6.20.24. In contrast, the 

susceptible RIL’s are 6.3.2, 6.4.12, 6.7.2, 6.10.14, 

and 6.17.8a (Table 2). The tolerant RIL’s were 

superior to better parent PR-202 (Figure 2). Higher 

recovery growth observed in tolerant RIL’s could be 

due to altered metabolism in response to acclimation 

(Larkindale et al., 2005). These identified RIL’s can be 

used as donor lines for further crop improvement 

studies. 
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Table 1. Genetic diversity in the seedling traits for acquired thermotolerance in 222 RIL’s of finger millet 

 

Parameter Min. Max. Mean SD SE(m) ± CD CV (%) 

Seedling survival (%) 50.0 96.4 83.9 7.3 3.7 10.4 7.7 

Reduction in shoot length (%) 1.24 83.4 44.9 18.0 2.9 8.2 11.3 

Reduction in root length (%) 17.7 88.3 66.5 16.0 1.9 5.3 5.0 

Reduction in total seedling 

length (%) 

9.0 78.9 58.4 14.8 1.8 4.9 5.2 

Seedling vigour index (SVI) 72.9 579 238 8.6 13.0 36.2 3.2 

 

Table 2. Tolerant and susceptible RIL’s of finger millet selected based on normal Z distribution 

 

RIL’s 
% seedling 

survival 

Shoot length Root length Total seedling length 
Seedling vigour 

index (SVI) 

Control 

(cm) 

Stress 

(cm) 

% 

Reduction 

Control 

(cm) 

Stress 

(cm) 

% 

Reduction 

Control 

(cm) 

Stress 

(cm) 
% Reduction control stress 

Tolerant RIL’s 

6.1.11 92.9 2.97 2.43 17.9 3.48 2.86 17.7 6.44 5.29 17.8 644.0 490.5 

6.5.10 96.4 2.56 2.43 4.7 4.25 3.39 20.3 6.81 5.82 14.5 680.5 560.5 

6.12.5 92.9 2.31 1.69 26.6 3.81 2.54 33.2 6.12 4.23 30.8 611.5 392.6 

6.13.8 92.9 1.98 1.90 4.1 3.89 2.20 43.4 5.79 4.18 27.7 578.5 387.9 

6.20.24 92.9 2.69 2.13 20.6 3.57 2.28 36.2 6.26 4.41 29.5 625.5 409.3 

Mean 93.6 2.50 2.12 14.8 3.80 2.65 30.16 6.28 4.79 24.1 628.0 448.2 

Susceptible 

RIL’s 

6.3.2 72.9 3.35 0.91 72.9 3.94 0.76 80.6 7.28 1.67 77.1 728.0 121.8 

6.4.12 50.0 3.76 1.12 70.2 6.12 1.03 83.2 9.87 2.15 78.3 987.0 107.1 

6.7.2 50.0 3.20 0.59 81.4 4.91 1.11 77.3 8.10 1.71 78.9 810.0 85.3 

6.10.14 67.9 2.25 1.15 48.6 4.80 0.67 86.0 7.05 1.82 74.1 704.5 124.1 

6.17.8a 67.9 2.33 0.62 73.2 4.30 0.79 81.6 6.63 1.41 78.7 663.0 96.0 

Mean 61.7 2.98 0.89 69.3 4.81 0.87 81.7 7.79 1.75 77.4 778.5 106.8 
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Figure 2.  Normal Z distribution of RIL’s based on 

percent seedling survival and percent reduction in 

recovery growth. Black dot indicates tolerant parent PR-

202 

Conclusion 

The Temperature Induction Response (TIR) was 

found to be a robust and powerful technique to 

screen the RIL or genotypes for temperature 

responses at a seedling level in a short period of 

time. The standardized normal Z distribution could 

be an easy and efficient tool to classify the 

genotypes using selected traits. The identified 

tolerant RIL’s based on the seedling survival (%) and 

reduction in recovery growth (%) were 6.1.11, 

6.5.10, 6.12.5, 6.13.8, 6.20.24, which can be used 

in crop improvement for regions with high 

temperatures. 
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