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ABSTRACT 

 Crop identification and acreage estimation were challenging for remote 

sensing scientists, especially when cropping season coincides with 

monsoon due to cloud coverage in optical data. Synthetic Aperture Radar 

(SAR) data has proved to be an alternative for overcoming the issue of 

clouds during the crop growth period and aid in crop identification. Crop 

identification has already reached the stage of operational services using 

the SAR data, while the crop condition assessment is still developing due 

to variations in crop scattering mechanisms. Automated algorithms are 

promising tools for capturing the wide variation in spatial and temporal data 

scattering properties. The importance of automation in GIS is evident in 

recent years from global research. Tracking of growth stages of a crop has 

quantum applications in yield forecast and formulating marketing 

strategies. To quantify the crop condition during the crop growth period, an 

automated tool to capture various stages of the crop, its conditions, and 

documentation was developed using the preprocessed SAR images derived 

from a fully automated processing chain module available with MAPscape 

software. The outputs of temporal Band Sequential (BSQ) images and Start 

of Season (SOS) for the analysis crop from MAPscape software were used 

as input for the automation tool to extract crop conditions viz., failed 

sowing, crop failure, and a good crop. The backscatter signatures 

developed from ground truth data for various crop conditions were used to 

validate the product. 
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INTRODUCTION 

Crop identification, yield estimation, varietal 

discrimination, and crop condition assessment are 

challenges before remote sensing scientists. Many 

developments in crop identification and yield 

estimation exist, while there are few breakthroughs 

in assessing the crop condition temporally. The 

restricted or rare availability of temporal cloud-free 

optical data during major cropping seasons has 

complicated tracking the crop condition. 

Microwave data is the only alternate option for 

assessing crop conditions in areas without cloud-

free optical data. In Tamil Nadu, Rabi is the major 

rice-growing season devoid of cloud-free optical 

data.  

As a new technology with the advantage of all-

weather, all-time, high resolution, and wide 

coverage, synthetic aperture radar (SAR) has been 

widely applied in the agricultural condition 

monitoring field. It thus provides a robust 

complement and support for crop identification. 

The updating and improvement of function 

parameters and performance index of radar  
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sensors have been an essential field of agriculture 

remote sensing that gets the information of crop 

acreage, growing conditions and yield by SAR. The 

handling of microwave data is advantageous in 

tropical regions in Asia, where most crops are grown 

in the rainy season. The processing of microwave 

data defies before the scientists have been 

overcome by software with automated processing 

chain. Hence, with these developments, it is now 

possible to take up crop condition assessment from 

SAR data.  

Monitoring vegetation properties has received 

much attention among several remote sensing 

applications. Doriaswamy et al. 2004, extensively 

carried out the crop condition assessment and yield 

simulations using Landsat and MODIS. Many 

experimental activities (Boerner et al., 1987, Haldar 

et al., 2012) were carried out to investigate the 

sensitivity of microwave sensors to vegetation 

parameters were carried out. The use of SAR 

backscatter coefficient in different polarizations and 

frequencies for crop identification and monitoring 

has been reported (Toan et al.,  1989  &  1997;   
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Hoekman and Bouman, 1993; Kurosu et al.,1995; 

Schotten et al., 1995). Using a polarimetric 

scattering matrix that contains information about 

polarization amplitude as well as a phase for crop 

characterization and classification has also been 

studied (Freeman et al., 1994; Skriver et al., 1999; 

Lee et al., 2001; Ainsworth et al., 2009; Haldar et 

al., 2012; Turkar et al., 2012, Panigrahy et al., 

2013). An attempt has also been made to establish 

relationships between polarization signatures of 

SAR signal to target properties (Ulaby et al., 1987; 

Boerner et al., 1987; Wang and Mo, 1990).   

SAR images for the rice area assessment have 

already reached the operational stage in Asian 

countries owing to their characteristic temporal 

signature. However, applying SAR images to 

estimate crop condition assessment is challenging, 

especially for understanding crop scattering 

mechanisms and discrimination. Automated 

algorithms are essential for mapping at large 

geographic scales (Bolanos et al., 2016; 

Westerhoff et al., 2013; Santoro et al., 2015). 

Traditionally, selecting a training dataset is one of 

the tedious and subjective steps that impede the 

automation in either thresholding or classification 

algorithms. Recently, several studies 

demonstrated the feasibility of automatically 

selecting training datasets from existing data 

products to generate newer and enhanced 

products (Feng et al., 2015; Klein et al., 2015; 

Zhang et al., 2017). 

 The importance of automation in GIS has 

been well understood in recent years due to its 

spatial and temporal variability. Information on 

crop conditions has the advantage of spatially 

assessing the yield forecast and formulating 

marketing strategies. Accurately quantifying the 

spatial and temporal dynamics of crop conditions 

in fields is critical. Since crop condition varies for 

each pixel, data consolidation is a tedious process, 

which warrants an automated crop condition 

assessment and reporting tool. 

MATERIAL AND METHODS 

The detection and delineation of rice crops for 

crop condition assessment were carried out in the 

Thiruvarur district of Tamil Nadu. The district is an 

agricultural district with rice as the main crop 

covering more than 90 per cent of the cultivable 

area. The district has a net cultivated area of 

around 3.28 lakh ha. 

Rice area detection and delineation  

Sentinel 1A SAR data, downloaded from the 

USGS website for 2019 at 12 days intervals. The 

dual-polarized Sentinel 1A data was subjected to 

preprocessing for further analysis of crop condition 

assessment following a fully automated processing 

chain designed by Holecz et al. (2013) to  

 

 

 

 

 

convert the multi-temporal SAR data into terrain 

geocoded σ° values.  

 The defects in the raw SAR images were 

caused due to atmospheric interference, radiometric 

characteristics were initially corrected, and the 

temporal stacks were registered (geometrical 

rectification) for extracting temporal signatures of 

rice crop. The steps in preprocessing include 

Mosaicking, Co-registration, Speckle filtering, terrain 

geocoding, Radiometric calibration and 

Normalization, Anisotropic non-linear diffusion 

(ANLD) filtering, Removal of atmospheric 

attenuation, Sub-setting and Single Look Complex 

(SLC) processing. The processing chain is available 

as a module within the MAPscape software (Figure 

1). 

 

Figure 1. Multi-Temporal σ° Rule-Based Rice 

Detection 

The multi-temporal stack of terrain-geocoded σ° 

images was used as input to a rule-based rice 

detection algorithm in MAPscape software. The 

temporal evolution of σ° was analyzed from an 

agronomic perspective, which requires a prior 

knowledge of rice maturity, calendar, duration and 

crop practices from field information and 

understanding of the study location. The temporal 

signature is frequency and polarization-dependent 

and depends on the crop establishment method 

and, to some extent, crop maturity. This implies that 

general rules can be applied to detect rice but that 

the parameters for these rules may be adapted 

according to the agro-ecological zone, crop practices 

and rice calendar. 

 A simple statistical analysis of the temporal 

signature of σ° values in the monitored fields guided 

the choices of parameters. The mean, minimum, 

maximum, minimum ratio, maximum ratio and span 

ratio of σ° were computed for the temporal signature 

of each monitored field. These six statistics, called 

temporal features, concisely characterize the key 

information in the rice signatures of the observed 

fields, and each relates directly to one parameter. 

Hence, the values of the six temporal features from 

the monitoring locations were used to guide the 

classification. 
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The outputs viz., BSQ images (Band 

Sequential), and SOS generated from the 

processing of temporal Sentinel 1A SAR data were 

used as inputs for the automation tool to derive 

crop conditions. 

II. Ground truth and signature analysis 

 Tracking crop growth stages and analyzing 

backscattering interaction with the crop is 

essential to capture the crop condition. Around 

200 ground-truth locations were selected across 

the district covering various crop growth conditions 

to derive temporal signatures for a detailed 

analysis of the signatures to understand the 

interaction and classify the crop condition into 

different classes viz., failed sowing, total crop 

failure and a good crop. Failed sowing is defined 

as a condition when the crop fails within 40 days 

after sowing/transplanting in the field, while total 

crop failure is when the crop fails after 40 days and 

before reaching the peak vegetative stage (< 70-

80 days). The other crops were classified as  good 

crops. Around 40 per cent of the ground truth data 

was used for the correlation and methodology 

development, and the remaining will be used to 

validate the tool. 

III. py coding and tool (GUI) development 

Python language has a separate module (pyro 

SAR) for programming SAR data, which can 

perform SAR image analysis. The correlation 

methodology to assess crop condition from 

backscatter values was incorporated into python 

programming to derive the desired output. A 

Graphical User Input (GUI) tool was developed with 

options to get data viz., BSQ and Start of Season 

images with administrative boundary. The crop 

condition module was designed to takes Inputs 

viz., BSQ file, Start of Season (SOS) file, shapefile 

for boundary and output folder to save the output.  

Apart from the main module of crop condition, 

an additional module NDVI profile tool was 

developed to aid in further information on the 

historical crop condition for the test crop. The NDVI 

profile module takes Inputs viz., Input folder, which 

has the NDVI files, Shapefile for boundary and 

output folder to save the output. Using these as 

inputs, the tool performs the following steps in an 

automated manner. 

IV. Zonation, report generation, and validation 

Based on the administrative boundary input for 

the tool, the zonation and output report generation 

were automated and incorporated into the tool. 

Percent area distribution of various crop 

conditions assessed for the area will be reported 

as a graph and excels outputs for further analysis 

and interpretation. The ground truth data, which 

was not used for methodology development, were  

 

 

 

 

 

used to validate the output from the tool developed. 

Accuracy assessments were carried out with a 

confusion matrix and kappa index. 

V. Accuracy Assessment 

 The Error matrix and Kappa statistics are used 

for evaluating the accuracy of the estimated rice 

area. The class allocation of each pixel in the 

classified image is compared with the corresponding 

class allocation on reference data (Crop Cutting 

Experiment data) to determine the classification 

accuracy. The pixels of agreement and disagreement 

are compiled as an error matrix. The rows and 

columns represent the number of all classes, and 

the matrix elements represent the number of pixels 

in the testing dataset (Lillesand, 1994). The 

accuracy measures, such as overall accuracy, 

producer’s accuracy, and user’s accuracy, are 

estimated from the error matrix (Congalton, 

1991).The accuracy is calculated as; 

Overall Accuracy =
Ʃ(Correctly classified classes along diagonal)

Ʃ(Row Total or Column Total)
  

    (1) 

Producer′s Accuracy =
Number of correctly classified class in a column

Total number of items verified in that column
 

    (2) 

User′s Accuracy =
Number of correctly classified item in a row

Total number of items verified in that row
  

    (3) 

Another measure of classification accuracy is the 

kappa coefficient, which measures the proportional 

(or percentage) improvement by the classifier over a 

random assignment to classes (Richards, 1999). 

The kappa coefficient is estimated from the formula 

for an error matrix with r rows and the same number 

of columns. 

      

 K̂ =
NA−B

N2−B
    (4) 

Where,   

A -the sum of r diagonal elements, which is the 

numerator in the computation of overall accuracy  

B -the sum of the r products (row total x column 

total) 

N -the number of pixels in the error matrix (the sum 

of all r individual cell values) 

Results and Discussion 

Rice crops and their crop growth in tropical and 

subtropical regions can be detected and tracked 

precisely through Synthetic Aperture Radar (SAR) 

imagery, especially where cloud cover restricts optical 

imagery. Parameterized classification with multi-

temporal features derived from regularly acquired C-

band, V.V. and V.H. polarized Sentinel-1A SAR imagery  

109 | 7-9 | 115 

Madras Agric. J., 2022; https://doi.org/10.29321/MAJ.10.000699 
 



was used for mapping rice area. Nelson et al. (2014) 

demonstrated an operational-orientated effort with an 

extensive demonstration of rice area mapping with 

SAR in 13 geographical rice-growing locations across 

South and South-east Asia in the context of Remote 

Sensing-based Information and Insurance.  

PMFBY crop insurance scheme implemented in 

India is based on the village as a unit for claiming 

insurance which includes various criteria, viz., 

prevented sowing, failed sowing, total crop failure, 

and yield-based compensations. Prevented sowing 

category is implemented when the village sown area 

is less than 25 per cent of the normal area sown 

before a cutoff date as decided by the district-level 

monitoring committee in that village which requires 

precise rice area grown in the particular village. Failed 

sowing is defined as a condition when the crop fails 

within 40 days after sowing/transplanting in the field 

while total crop failure is when the crop fails after 40 

days and before reaching peak vegetative stage (i.e., 

< 70-80 days). The other crops are said to be good 

crop.  

To estimate the various categories of PMFBY crop 

insurance scheme, a detailed analysis of the temporal 

signatures for Rice crops was carried out to 

understand the correlation between the phonological 

stages of the crop and the backscatter values from 

temporal SAR satellite data. The results obtained are 

as follows. 

1. Extraction of temporal signatures to assess 

crop condition: 

Temporal signatures were extracted for the 

200ground truth points collected during the crop 

survey of Thiruvarur district. The start of season map 

generated from processing of SAR data in Mapscape 

software for rice crop was used to identify the start 

date of each rice pixel in the map and was correlated 

with the phonological stages of the crop thereafter. 

The SAR satellite data were acquired every 12 days, 

and the corresponding backscatter (dB) values were 

plotted to identify the temporal signature of the rice 

crop. The analysis showed that the backscattering 

(dB) values increased from the start of the season 

(SOS) as the crop grew and reached a maximum at the 

peak vegetative stage / Flowering stage and started 

decreasing there after (Figure 2) for a normal crop. 

The minimum dB values ranged from -19.93 to -17.09 

and the maximum from -17.23 to -15.54. 

The temporal signatures extracted using ground 

truth data showed a decline in dB values even before 

attaining 90 days duration in a few spots denoting the 

failure of the crop (did not follow a standard growth 

pattern). The decline in dB was at different stages of 

the crop from the start. These signatures were 

extracted to derive the rice crop's failed and crop 

failure condition. The various forms of failed and crop 

failure signatures derived are presented in Figures 

3a&b. 

 

 

 

 

 

 

Figure 2. Mean temporal dB curve for paddy crop 

generated from Sentinel-1A 
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Figure 3a. Temporal Signature of Failed Sowing  

 

 

 

 

 

Figure 3b. Temporal Signature of Crop Failure 
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2. Automated processing tool for delineating various 

crop conditions: 

Based on the knowledge acquired from the 

detailed analysis of crop response to temporal 

backscatter (dB) values, a tool to automate the 

extraction of temporal signature from satellite data 

and to classify the pixels based on the signature was 

developed using python script integrating Geospatial 

Data Abstraction Library (GDAL) and OGR libraries. 

Two modules viz., Crop Condition Analyst and NDVI 

profile analyst were developed to attain the objectives 

of the project. A graphical user interface (GUI) was 

developed to include the modules and for easy 

operation using Q.T.designer (Figure 4a), which 

consists of a main menu with drops of the two 

modules, Settings to provide input and output 

directories of work, panel hiding, etc. The Crop 

condition module takes Inputs viz., BSQ file, Start of 

Season (SOS) file, Shapefile for boundary and Output 

folder to save the output (Figure 4b). Using these as 

inputs, the tool performs the following steps in an 

automated manner. 

a) Extracting values from BSQ Layer: Extracting 

the number of bands in the BSQ layer will be done by 

iterating through the pixels. 

b) Preparing Mask Layer: SOS layer will be used 

to mask the BSQ file to keep only the rice pixels and 

remove no-data values and other non-rice pixels to 

reduce processing time. 

c) Populating classes: Each band (temporal 

data) will be converted to array values and iterated 

through the SOS pixels for deriving the temporal 

signature. 

d) Generating Final output class-map: The 

signature values extracted from the previous step will 

be classified as failed sowing, Crop failure, and a good 

crop. 

e) Zonal Statistics: Area statistics will be derived 

from the class image and written to excel for further 

processing. 

The data for the Thiruvarur district of Tamil Nadu 

was taken up to run the tool. Block map of the district 

was given as boundary input, and the tool performed 

seamlessly, giving the image and excel outputs within 

2 minutes and 45 seconds. The district had 18 blocks, 

and the area under each category of failed sowing, 

total crop failure, and good crop were delineated 

(Table 1). 

The NDVI profile module takes inputs viz., Input 

folder which has the NDVI files, Shapefile for 

boundary, and Output folder to save the output 

(Figure4c). Using these as inputs, the tool performs 

the following steps in an automated manner. 

 

 

 

 

 

 

a) Listing of NDVI files: The process iterates 

through the input folder and finds suitable images for 

processing. It also performs year listing from the files 

identified. 

b) Populating arrays: The identified NDVI files will 

be converted to arrays to extract values. 

c) Populating classes: Each NDVI file will be 

iterated through the pixels to derive the temporal 

signature. 

d) Generating Final output class-map: The 

signature values extracted from the previous step will be 

classified based on the number of peaks attained in a 

year and generate season maps. 

e) Zonal Statistics: Area statistics will be derived 

from the class image and written to excel for further 

processing. 

The output generated from the modules can be 

visualized in the matplotlib chart output for information. 

Further mapping can be taken up using open-source GIS 

software’s viz., QGIS, GRASS or SAGA. The outputs are 

presented in Figure 4d. 

3. Accuracy assessment: 

 The output generated from the tool viz., Failed 

sowing, total crop failure and a good crop were assessed 

for accuracy using a confusion matrix. The Crop Cutting 

Experiment data collected for the study area were used 

for the assessment. Around 230 CCE points were 

collected including 136 data for good crop category and 

94 points for Total crop failure. Since the study area 

(Thiruvarur district) did not contain failed sowing CCE 

points, the class was omitted for accuracy assessment. 

The results revealed an overall accuracy of 93.04 per 

cent and a kappa index of 0.85 (Table 2). The estimates 

of area under different categories from the tool were of 

good accuracy, evident from the accuracy and more 

than 85 percent agreement apparent from the kappa 

index. The tool has classified the categories with higher 

accuracy. 
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Figure 4a. Crop condition assessment tool 

 

 

 

Figure 4b. Crop condition Analysis module 

 

 

 

 

 

Figure 4c. NDVI Profile Analysis module 

 

 

Figure 4d. Output maps generated from Crop condition 

tool 
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Table 1. Classes of Rice area in Thiruvarur district (Area in ha) 

BLKNAME 
Block 

Area 
Failed Sowing Crop Failure Good Crop 

Percent 

area 

cultivated 

Thiruppanandal 16496.44 0 966.16 9501.51 63.45 

Kumbakonam 18237.74 0 1342.99 10586.16 65.41 

Thiruvidaimaruthur 18858.18 0 1095.78 10032.82 59.01 

Papanasam 14661.41 0 934.03 6385.17 49.92 

Thiruvaiyaru 16373.19 0 1870.59 11961.23 84.48 

Ammapettai 10.02 0 0.82 14.19 149.80 

Ammapettai 4.61 0 1.88 2.20 88.50 

Ammapettai 196.92 0 5.67 50.07 28.31 

Ammapettai 123.43 0 17.25 95.08 91.01 

Ammapettai 23904.89 0 2381.36 17857.24 84.66 

Thanjavur 42457.59 0 4353.85 28262.00 76.82 

Budalur 28730.11 0 2038.38 15518.04 61.11 

Orathanadu 41134.06 0 5016.08 30350.89 85.98 

Thiruvanam 21433.16 0 2163.43 14794.77 79.12 

Madukkur 17665.95 0 959.23 6128.46 40.12 

Pattukottai 32591.56 0 2192.58 12560.80 45.27 

Peravurani 20676.45 0 1453.93 8355.90 47.44 

Sethubavachatram 26507.82 0 2727.85 8267.10 41.48 

 

Table 2. Accuracy assessment for rice classes 
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Predicted class from the map 

Class Good Crop Total Crop failure Accuracy 

Good Crop 129 7 94.85% 

Total Crop failure 9 85 90.43% 

Reliability 93.48% 92.39% 93.04% 

Average accuracy 92.64% 

Average reliability 92.93% 

Overall accuracy 93.04% (Good accuracy) 

Kappa index 0.85 

 



CONCLUSION  

It is important to assess spatial and temporal 

crop conditions to understand the impact of 

wagering monsoon, pest and disease incidence, 

and management practices, which directly affect 

the crop yield and, subsequently, the market. 

Although the estimation of crop area could be 

achieved with higher precision through remote 

sensing, obtaining information on crop conditions 

through the growing season is always a constraint 

due to high spatially and temporally variability. This 

issue has been overcome with the development of 

an -source tool coded using Python scripting with 

extended GDAL and OGR libraries to process 

Spatio-temporal satellite data and vector files for 

effectively delineating crop conditions from the 

backscattered values. The tool can generate 

statistics from farm level to State or country level 

in a quicker time, and the outputs are presented in 

both image and excel formats, which can serve as 

a base for understanding the crop condition 

spatially and temporally. The automated tool 

developed is of open source type and is specific to 

rice crop condition assessment from temporal SAR 

satellite data, while there exists scope for 

extending to other crops by analyzing backscatter 

signatures and the crop growth cycle. Some of the 

hard-coded parameters for assessing the crop 

condition can be made as user input to make the 

tool more dynamic. 
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