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ABSTRACT

Thermophilic bacteria, Bacillus subtilis VSDB5 isolated from the hot springs 
of Vashist had cellulase activity. Molecular confirmation for the presence 
of cellulase gene in the B. subtilis genome amplified partial gene fragment 
around 1300 bp. The full-length endo-glucanase gene isolated using 
specific primers was 1500 bp. Sequencing and BLAST analysis revealed 
the fragment had 98% homology to endo-glucanase gene of Bacillus 
subtilis 168. Multiple alignments and homology modelling revealed that 
it belongs to GH5 endo-glucanase with its structure containing a classical  
(β/α)8, TIM-barrel fold with conserved active site residues, Glu257 and 
Glu165. The isolated endo-glucanase gene sequence was submitted in 
NCBI, and the accession was MK424591.
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INTRODUCTION

Cellulose is a linear polysaccharide of glucose 
residues with β-1, 4-glycosidic linkages. The abundant 
availability of cellulose makes it an attractive raw 
material for producing many industrially important 
commodity products. Cellulose can be converted to 
glucose, a multi-utility product, in a much cheaper 
and biologically favorable process. Cellulolysis 
is basically the biological process controlled and 
processed by the enzymes of cellulase system. 
Cellulase enzyme system comprises three classes of 
soluble extracellular enzymes: 1,4-β-endoglucanase, 
1,4-β-exoglucanase and β-glucosidase (β-D-
glucoside glucohydrolase or cellobiase). Endo-
glucanase is responsible for the random cleavage 
of β-1,4-glycosidic bonds along a cellulose chain. 
Exoglucanase is necessary for cleavage of the non-
reducing end of a cellulose chain and splitting of the 
elementary fibrils from the crystalline cellulose, and 
β-1,4-glucosidase hydrolyses cellobiose and water-
soluble cellodextrin to glucose (Shewale, 1982). 

Cellulases have been reported from several living 
organisms, and among them, fungal cellulases have 
major industrial applications. High-temperature 
tolerance improves the enzyme robustness and 
increases the enzyme reaction rates needed for 
industrial-scale processes, thereby decreasing the 
amount of enzyme needed (Kumar and Wyman, 
2008). Hence the search for thermostable enzymes 
is still ongoing. With the advancement in molecular 
techniques, the cellulase gene can be modified with 
a desirable character or over-expressed in a non-host 

organism for mass production. With this background, 
the present investigation aims at search of the 
cellulase gene from thermophilic bacteria and to 
predict the protein structure functions.

MATERIALS AND METHODS

Screening for cellulase producing thermophilic 
biocatalysts

Thermophilic bacterial isolate, VSDB5, was 
screened for the production of biomass hydrolyzing 
enzyme, cellulase. The microbial culture was spot 
inoculated in CMC containing minimal media 
and were incubated at 50 °C for 48 h. Later the 
plates were stained with 1% congo red, followed by 
destaining with 1M NaCl for 20 min each (Salem 
et al., 2008). Positive isolates showed a zone of 
clearance around the cell growth. The hydrolytic 
capacity is calculated by the ratio between the 
diameters of the clear zone by the diameter of the 
colony.

Genomic DNA extraction and PCR amplification

The genomic DNA from VSDB5 was extracted 
using CTAB method (Wilkie, 1997). Cellulase gene 
was amplified using the gene-specific primers: 
Ba_EN1F (5’ CCAGTAGCCAAGAATGGCCAGC 3’) 
and Ba_EN1R (5’ GGAATAATCGCCGCTTTGTGC 3’) 
(Ashe et al., 2014). The PCR product was resolved 
by electrophoresis in 1.2% agarose gel in 1 X TAE 
buffer. Gels were stained with ethidium bromide 
(10 mg. ml–1) and documented using a Bio-rad Gel 
DocXR+ system (Hercules, CA, USA). The amplified 
PCR products were purified using GeneJET PCR 
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Purification Kit (Thermo Scientific, USA) and were 
sequenced at Eurofins, India.

Primer designing and isolation of endo-
glucanase gene

The endo-glucanase gene-specific primer for 
Bacillus was designed using Oligo perfect designer 
based on the endo-glucanase gene sequence 
(EF070195) available in the NCBI database. The 
full-length endoglucanase gene was amplified using 
the specific primer set with the PCR conditions as 
follows: 95 °C for 5 min; 35 cycles of 94 °C for 
1min, 54 °C for 1 min, and 72 °C for 1.5 min; and 
72 °C for 10 min. The amplified PCR fragment was 
gel eluted (PrepEase Gel Extraction Kit, Canada) and 
cloned into a pGEM-T easy vector (Promega, USA). 
The positive colonies were selected based on the 
blue-white selection and PCR. The positive clones 
were sent for sequencing (Eurofins, Bangalore). 

Sequence-structure analysis:

The endo-glucanase of VSDB5 was analyzed 

in the RCSB server (www.rcsb.org). The sequence 
and structure homologs were retrieved for multiple 
sequence alignment (MSA). The MSA was prepared 
using Bioedit sequence editor (Version 7.2.5). The 
structure was made using swiss-model automated 
server (https://swissmodel.expasy.org). The active 
sites were predicted based on the Bacillus subtilis 
168 (3pzt) sequence alignment. The structure was 
drawn using PyMol software (Ver 0.97).

RESULTS AND DISCUSSION

Qualitative screening for cellulase production by 
thermophilic bacteria

The complex cellulose polymer is broken down 
into simpler sugars by the cellulase enzyme complex. 
Cellulase production by several living organisms viz., 
plant, microbes, insects have been reported. 
Cellulolytic bacterial species include Bacillus, 
Trichonympha, Clostridium, Actinomycetes, 
Bacteroides succinogenes, Butyrivibrio fibrisolvens, 
Ruminococcus albus, and Methanobrevibacter 

Table 1. Analysis of Bacillus cellulase gene sequence
Primer 
used Sample

Sequence homology

Organism Gene Accession No. Per cent 
homology

Cellulase VSDB5 Bacillus subtilis subsp. subtilis strain 168G Endo-glucanase gene CP016852.1 98

ruminantium (Schwarz, 2001 and Ekperigin, 2007). 
In the present study, thermophilic bacteria, VSDB5 
isolated from the hot springs of Vashist (~65 °C), 
Himachal Pradesh, produced cellulase enzyme with 
a hydrolytic capacity of 7.33. The substrate hydrolysis 
was visualized as a yellow color clearing zone around 
the positive colonies. 

Figure 1. Qualitative assay for cellulase production 
by thermophilic bacteria

The qualitative assay revealed massive cellulose 
utilization around the thermophilic bacteria, Bacillus 
bacteria, VSDB5 (Figure 1). 

Bacillus sp. is gram-positive bacteria with a high 
level of extracellular enzyme production capacity, 
which attracted its application in many industries. 
Cellulase enzyme production by several Bacillus 
species has been reported (Bhalla et al., 2012; 
Pandey et al., 2014; Sharma et al., 2015 and Vyas 
et al., 2016). Optimal cellulase activities of different 
isolates like Bacillus circulans (4.80 IU/ml) and 
Bacillus subtilis (4.64 IU/ml) were well reported Volume xxx | Issue xxxx | 2 
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joining (NJ) method (Figure 3). BLAST analysis of the gene sequence showed 98% homology to Bacillus 101 
subtilis subsp. subtilis strain 168G Endo-glucanase gene (CP016852.1). Several cellulase genes from B. 102 
subtilis have been isolated and are available in NCBI database eg. AAK39540.1, AAK94871.1, 103 
ABK63475.1, and CAA47429.1 (Li et al., 2008). 104 
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Isolation of full-length endo-glucanase gene from 
thermophilic Bacillus subtilis

The endo-glucanase gene was amplified from 
thermophilic bacteria VSDB5 using an endo-
glucanase gene-specific primer. The amplification 
resulted in 1500 bp gene fragment (Figure 2B).  
The gene fragment was eluted, cloned, and 
transformed into E. coli DH5α cells. From the PCR 
positive white colony JB-VSDB5-EN-3, the plasmid 
was isolated and sequenced. Blast analysis showed  

99 % homology to other endo-glucanase genes from 
Bacillus, and the phylogenetic tree was constructed 
on the aligned datasets using the neighbor joining 
(NJ) method (Figure 3). The nearest match was to 
Bacillus subtilis subsp. subtilis strain 168G Endo-
glucanase gene (CP016852.1). Several cellulase 
genes from B. subtilis have been isolated and 
are available in NCBI database eg. AAK39540.1, 
AAK94871.1, ABK63475.1, and CAA47429.1 (Li  
et al., 2008).
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Protein Sequence and structure analysis of 
endo-glucanase of Bacillus subtilis VSDB5 

Endo-glucanase from Bacillus subtilis VSDB5 
(EG VSDB5) showed 100 percent identity to endo-
1,4 beta-glucanase from Bacillus subtilis 168 
(3pzt). Other organisms that showed sequence and 
structural match with VSDB5 were from alkalophilic 
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Figure  5. Swiss-model predicted structure of endo-glucanase from VSDB5. The template was Bacillus 121 
subtilis 168 (3pzt), which shared 100% identity with VSDB5. The active site residues Glu165 and Glu257 122 
are shown in sticks. 123 
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Cytophaga hutchinsonii (5ihs), and  Thermobifida 
fusca  (2cks)   with a percent identity of 67.9, 68.3, 
50.3, and 42.8 respectively (Figure 4). The homology 
model of VSDB5 was made using a swiss-homology 
modelling server using Bacillus subtilis 168 (3pzt) 
as a template (Figure 5). 

Figure 4. Multiple sequence alignment (MSA) of endo-glucanase from close homologues of VSDB5. The 
active site residue is boxed.
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Figure  5. Swiss-model predicted structure of endo-glucanase from VSDB5. The template was Bacillus 121 
subtilis 168 (3pzt), which shared 100% identity with VSDB5. The active site residues Glu165 and Glu257 122 
are shown in sticks. 123 
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We attempted to clone the full-length endo-
glucanase gene from the thermophilic B.subtilis 
VSDB5. The full-length coding gene was about 
1500 bp and the sequence was submitted in NCBI 
database under the accession MK424591. This 
gene can be over-expressed in non-host organisms 
for mass production and its utilization in the industry. 
Endo-glucanase, along with BGL brings better 
biomass hydrolysis in bioethanol production. Co-
expression of endo-glucanase A from an endophytic 
Bacillus pumilus and the hyperthermophilic 
β-glucosidase A (BglA) from Fervidobacterium sp. 
in Escherichia coli presented a 30-fold increase 
in reducing sugar content from CMC compared to 
unmodified strain (Rodrigues et al., 2010). Similarly, 
expression of CelA, BglA and BglB genes in Bacillus 
subtilis secreted endo-glucanase and β-Glucosidase 
into the media successfully (Yuan et al., 2013)

CONCLUSION

A cellulase is a wide group of enzyme with 
broad industrial applications. The search for novel 
enzymes with increased stability had led to the 
exploration of novel thermophilic biocatalysts 

with better enzyme activity. Understanding the 
cellulase gene will help to improve its stability and 
activity using modern biotechnological tools. In 
this study, we have identified cellulase producing 
thermophilic Bacillus subtilis VSDB5 and confirmed 
the presence of cellulase gene in its genome. The 
full length endo-glucanase coding gene of 1500 bp 
was cloned. Through over-expression of this gene 
in suitable expression host, characterization and 
mass production of the endo-glucanase enzyme 
can be achieved, which will find a major application 
in various industries for the production of biomass-
derived products.
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