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ABSTRACT

RNAs play a significant role in regulating gene expression and their principal 
areas have been exploited for the control of plant viruses by the discovery 
of RNA silencing mechanism. RNA silencing or RNA interference (RNAi) 
is an innovative mechanism that regulates and restricts the amount of 
transcripts either by suppressing transcription (TGS) or by the degradation 
of sequence-specific RNA. RNAi can be used effectively to study the role of 
genes in a variety of eukaryotic organisms by reverse genetics. The technology 
has been employed in several fields such as drug resistance, therapeutics, 
development of genetically modified animals for research and transgenic 
plants targeting plant viruses. In plants, small interfering RNAs (siRNA) are 
the characteristic of 21 to 22 bp long dsRNA, which has been recognized 
by the regulatory mechanism of RNAi and leads to the sequence-specific 
degradation of target mRNA. In addition to virus disease control, RNAi can 
also be used to control mycotoxins and plant diseases caused by other 
organisms. This review enhances our current knowledge of RNAi and its larger 
applications in agriculture, specifically in plant virus disease management.
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INTRODUCTION

Plant pathogens are a significant threat for 
the cultivation of crops and it creates difficulties 
in agriculture production, especially the plant 
viruses cause significant loss in the productivity of 
economically important crops around the world. The 
virus infection on crop plants causes 50-100% yield 
reduction depending upon the nature of crops and 
stages of virus infection. The  complete yield loss 
was also noticed in several crops if it is infected 
during the early stages of infection and believed to 
cause one-third global loss of crop production. The 
strategies for viral disease management are based 
on agricultural practices, such as application of 
pesticides to manage the virus transmitting insect 
vectors, planting the fast-growing cereals as barrier 
crops to prevent insect movement, destroying the 
vulnerable weed hosts, and conserving optimal plant 
density to reduce disease incidence. However, they 
are rarely practiced under subsistence agriculture 
systems. In the past, traditional methods like use of 
cross protection and increased host plant resistance 
through beneficial microbes have been followed for 
virus disease management in several crops and that 
have worked markedly to some extent. Later, genes 
that are available naturally have been explored as 
one of the most effective sources to confer resistance 

in plants. However, only limited naturally available 
genes were explored to develop resistant varieties 
through molecular and breeding programmes 
(Sasaya et al., 2014). Though developing resistance 
in plants through conventional methods to protect 
them against viruses is expensive, it often takes 
years to breed resistance into desirable varieties. 
In order to sustain the agriculture production and 
maintain the quality produces, it demanded to use 
the biotechnological tools as one of the substantial 
techniques for the buildout of virus resistance in the 
plant to suppress the virus infection. The pioneering 
works on coat protein gene of Tobacco mosaic 
virus-mediated transgenic approach by Beachy 
(1986) opened up the perception of pathogen-
derived resistance. Later, advancements in genetic 
engineering and plant transformation increased 
the probability of developing multiple plant virus 
control strategies.There are two main approaches in 
engineering virus resistance in plants. The genes can 
be originated from the pathogenic virus itself (pathogen-
derived resistance) or from any other source (non-
pathogen-derived resistance) (Dasgupta et al., 2003). 
In pathogen-derived resistance (PDR), a portion or 
full viral genome is inserted into a plant; thereafter, 
it regulates or interferes with vital steps in the life 
cycle of the pathogen,which led to resistance in 
plants against virus infection. Diverse viral pathogen-
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derived genes such as coat protein, movement protein 
and replicase genes have been effectively utilized to 
buildout the virus-resistant transformants (Baulcombe, 
2002; Senthilraja et al., 2018; Gogoi et al., 2019).

Importance of viral diseases on crop plants and 
their management

The proper management of virus disease is 
fundamental to farmers and agricultural industries 
to meet the demands. The virus diseases in several 
crops cause huge losses in terms of quantity and 
quality of agriculture produces. For example, the 
genus Tospovirus is one of the key viral pathogens 
of plants found to be economically important by 
threatening vegetable production in India. Groundnut 
bud necrosis virus, a species of Tospovirus causes 
nearly 80 per cent crop loss in tomato and 
other Solanaceous crops under field conditions 
(Kunkalikar et al., 2010, 2011; Sushmitha and Bhat, 
2014). Similarly, strains of Cassava mosaic virus 
cause more than 25 million tons of losses every 
year in Africa, India and Sri Lanka (Legg and Thresh, 
2000). Tungro virus created epidemics during 2001 
in West Bengal which resulted in loss of around 
2911 million rupees (Muralidharan et al., 2003). 
The economic loss in rice due to virus diseases from 
South East Asia was estimated around more than 
$1.5 billion (Abo and Sy, 1998; Sasaya et al., 2013). 
Sri Lankan cassava mosaic virus (SLCMV) belongs 
to the genus Begomovirus was found to be a severe 
pathogen of cassava causing mosaic disease in 
India and 84% yield losses has been documented 
in India (Thottapilly et al., 2003). Tobacco streak 
virus (TSV), which belongs to the genus Ilarvirus 
(Family, Bromoviridae), has an extensive host range 
which infects several vegetable crops causing heavy 
crop loss (Jain et al., 2005, 2008; Sivaprasad et 
al., 2010). In addition to vegetable crops, it infects 
groundnut (Reddy et al., 2002), sunflower (Ramiah 
et al., 2001), soybean (Arun Kumar et al., 2008), 
blackgram (Ladhalakshmi et al., 2006) and cotton 
(Jagtap et al., 2012; Vinodkumar et al., 2017) in 
India. Besides, economic loss in terms of yield is 
under estimated from the field in several crops 
due to virus infection because it requires precise 
diagnostic techniques to determine the damage 
caused due to pathogen. Recent trends in food 
security and intensive agriculture have fetched new 
tasks to fight against virus diseases. Disease control 
by means of curative measures i.e, adaptation of 
cultural practices, is impossible due to variability in 
genome of virus and obligate nature of pathogen. It is 
necessary to control the disease before establishing 
pathogen in crops using different approaches called 
a prophylactic measure. In this context, several 
researchers have identified the beneficial microbe to 
induce host plant resistance against virus infection 
in several crops. In addition, identification of new 

genes for developing the resistant plants through 
breeding programmes consumes more time and 
little laborious. It is necessary to apply advanced 
molecular biotechnological tools to develop 
genetically superior cultivars to suppress the virus 
disease in crop plants.

Sources of gene to engineer the plants for virus 
resistance

The rapid development in molecular biology 
techniques led to cloning and investigation of the 
genomic components of a variety of plant viruses. 
There are different strategies for transgenic 
resistance to plant virus. 

1.	 Pathogen-der ived resistance with the 
incorporation of pathogen components to the 
plant genome that interferes with the usual life 
cycle of the virus. 

2.	 Pathogen-targeted resistance, relating to the 
inclusion of elements directly targeting viral 
genes and their products to make them non-
functional. 

3.	 Incorporation of prevailing genes from resistance 
plants into non-resistance plants. 

Depending on the source of gene used, there 
are primarily two approaches for constructing 
genetically engineered resistance. The genes 
may be derived from the pathogenic virus itself 
(pathogen-derived resistance-PDR) or any other 
source. Non-pathogen-derived resistance involves 
using genes responsible for host tolerance and other 
genes regulating the adaptive host processes; genes 
provoked in response to pathogen attack to develop 
transgenics resistant to plant virus (Dasgupta et al., 
2003). The approaches for PDR are classified into 
two groups, those that require the development of 
proteins (e.g., coat protein, replicase, movement 
protein-mediated resistance) and those that need 
only the viral nucleic acid accumulation (e.g., 
dsRNA-mediated resistance, sense, antisense, and 
ribozyme) (Kalantidis et al., 2002). In general, the 
earlier technique confer resistance to wide array 
of viruses, while the later provides high levels of 
resistance to a particular strain of virus. Several 
reports have been documented for the development 
of pathogen-derived virus resistance in plants. 
Enhancing the antiviral activity in plant species 
through gene silencing has proved to be effective 
in several plant-virus pathosystems. 

Coat protein-mediated resistance (CPMR)

CPMR was first reported for Tobacco mosaic 
virus (TMV) in tobacco model system in 1986, 
and it has also been used to develop resistance 
to many viruses in various crop plants. CPMR 
may offer a broad range or narrow protection 
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to transgenic plants. The TMC coat protein (CP) 
provides the resistance to closely associated strains 
of TMV effectively and fading levels of resistance to 
tobamoviruses which share low level of sequence 
similarities with CP gene was noticed (Nejidat and 
Beachy, 1990). The transgenic lines of Nicotiana 
benthamiana developed using CP of Cowpea aphid-
borne mosaic virus (CABMV) exhibited the delayed 
symptom development during the early stages of 
disease development (Mundembe et al., 2009). 
Raj et al. (2005) showed that transgenic tomato cv. 
Pusa Ruby developed using the CP gene of Tomato 
leaf curl virus (TLCV) exhibited variable degrees of 
resistance or tolerance when plants were challenge 
inoculated with viruliferous whiteflies carrying the 
TLCV. Later, the plants were found without symptoms 
even after 75 days of challenge inoculation. Further, 
PCR analysis using replicase gene-specific primers 
produced negative results in plants challenge 
inoculated and suggested that they did not support 
accumulation and replication of virus, indicating 
the CP gene (TLCV- CP) arbitrated the resistance in 
plants. Saker (2003) produced transgenic potato 
lines harbouring the CP gene of Potato virus Y (CP-
PVY), and transgenic potato lines expressing CP-PVY 
gene, confers resistance against PVY.

Movement protein-mediated resistance (MPMR)

The cell-to-cell movement of virus in a plants 
system is mediated by movement proteins (MP). 
It has been shown that movement proteins 
change the gating mechanism of plasmodesmata, 
allowing the particle of virus and their derivatives 
to spread to neighboring cells. However, pathogen-
mediated resistance may also be engineered with 
dominant-negative mutant forms of viral genes. 
The usefulness of this strategy was demonstrated 
by the expression of viral MP in transgenic plants, 
that conferred resistance only when the transgene 
defined a dysfunctional MP. This phenomenon was 
first demonstrated in tobacco plants by producing 
modified MP to develop resistance against TMV, 
which is moderately active as a transgene. It is 
assumed that conferred resistance is based on 
the rivalry between the encoded MP gene of the 
wild-type virus and the preformed dysfunctional 
MP to bind to the plasmodesmatal sites (Lapidot 
et al., 1993). In addition, the above resistance was 
shown to be successful against distantly related or 
dissimilar viruses (Lapidot et al., 1993; Malyshenko 
et al., 1993). The transgenic N. benthamianaplants 
expressing the modified 13K MP, determined by 
the central Triple Gene Block (TGB) ORF of White 
clover mosaic potexvirus (WClMV), showed systemic 
resistance to WClMV infection as well as expressed 
the resistance to Potato virus S (PVS) and two 
Potexviruses (Beck et al., 1994). Cooper et al. (1995) 
reported that transgenic N. tabacum cv. Xanthi NN 

lines express a gene encoding a dysfunctional MP 
(dMP+) of TMV that was developed with deletion 
of 3, 4 and 5 N-proximal amino acids, which are 
known to be immune to many Tobamoviruses. The 
sign of disease and systemic spread of virus in the 
upper leaves of challenge inoculated plants were 
delayed the symptom expression and reduced the 
accumulation of virus as systemic infection in the 
plants challenge inoculated with Alfalfa mosaic 
alfamovirus, Cucumber mosaic virus, Tobacco 
ringspot virus, Tobacco rattle virus and Peanut 
chlorotic streak virus.

Replicase protein-mediated resistance (Rep-MR)

The replicase proteins conferred the immunity 
to infection by the virus, usually restricted to the 
strain of the virus, from which the target gene was 
derived. It was first demonstrated in transgenic 
plants containing a sequence that codes a replicase 
fragment of 54 kDa against TMV (Golemboski et 
al., 1990). A truncated replicase gene derived 
from Cucumber mosaic virus (CMV) subgroup I 
has deliberated maximum level of resistance in 
transgenic tobacco against subgroup I of CMV 
strains. However, transgenes never showed any 
resistance to other subgroup II or other viruses 
(Zaitlin et al., 1994). Similarly, mutated replication-
associated protein from Maize streak virus (MSV) 
used for maize transformation showed stable 
expression and plants showed a substantial 
decrease in symptom severity (Shepherd et al., 
2007). The mechanisms behind the suppression of 
virus was strongly believed to block the replication 
of virus and the protein formed by the transgene is 
proposed to interfere in some way with the replicase 
formed by the virus (Hellwald and Palukaitis, 1995; 
Heinlein, 2015; Lee et al., 2019). 

RNA silencing

The RNAi-based strategies have been explored 
as a supremacy tool to engineer the plant against 
plant viruses. The resistance attained in transgenic 
plants mainly due to post-transcriptional gene 
silencing induced by transgene via dsRNA formation 
is termed as RNA silencing (Baulcombe, 2002). RNA 
silencing has augmented the search of plant antiviral 
mechanisms that enable down-regulation of gene 
expression with maximum accuracy without affecting 
the expression of other genes. The resistance targets 
precisely the RNA genome and it has been referred 
to as RNA mediated resistance / RNA interference 
(RNAi) (Wang et al., 2000; Grishok et al., 2000; 
Hammond et al., 2000; Smith et al., 2000). RNA 
interference mechanism was first demonstrated in 
plants, where insertion of additional copies of flower 
pigmentation responsible chalcone synthase gene 
resulted in the suppression of sequence-specific 
target and the endogenous RNA. Subsequently, 
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transgenic lines were developed to produce reduced 
pigmentation in flowers or even the complete 
absence of pigmentation (Napoli et al., 1990; Van 
der Krol et al., 1990). RNAi can be induced in plants 
by delivering expression vectors similar to self-
complementary dsRNA (Horiguchi, 2004; Watson 
et al., 2005) (Figure 1). Some experimental studies 
have revealed that inverted repeat constructs that 
encode hairpin RNAs (self-complementary RNAs) 
can induce RNA silencing effectively in plants and 
leads to high frequencies of resistance in transgenic 
lines (Chen et al., 2004). Helliwell and Waterhouse 
(2003) described that RNAi constructs have a 
spacer sequence between an inverted repeat and 
the resulting transcript from stem-loop structure 
from the RNAi construct and these transcripts are 
often called hairpin RNAs (hpRNAs). The increased 
gene silencing effect of constructs was attained 
by the existence of an intron in between the two 
complementary regions (Smith et al., 2000). 
They also demonstrated that plants transformed 
with a construct comprising sense and antisense 
sequences of NIa protease (Pro) gene of Potato 
virus Y with flanking with the spacer fragment size 
of 800-nucleotide derived from the uidaA (GUS) 
gene expressed the high level of resistance to virus 
and conferred the stability of the seamless inverted-
repeat sequences.

RNA silencing in plants can serve as defense 
mechanism against virus infection and transposons 
(Vance and Vaucheret, 2001; Voinnet, 2001). It has 
been shown that the expression of inverted repeats 
in transgenic plants improved the resistance against 
the virus, suggesting the role for double-stranded 
(ds) RNA. Since dsRNA is not a normal constituent 
of the eukaryotic cells and it became evident that 
they are the key regulator in the process of gene 
silencing mechanism,which leads to degradation of 
RNAs that are homologous in transgene (Vaucheret 
and Fagard, 2001). The DNA stability was formed by 
eliminating the loop region of hpRNA by replacing 
the spacer with an intron sequence, but was spliced 
out during pre-mRNA processing (Smith et al., 2000). 
The efficient silencing effect was documented in 
transformed plants expressing the inverted repeat 
constructs encompassing sense/anti-sense arms 
ranging from 98 to 853 nucleotide and inclusion 
of a spacer sequence (intron) in the constructs 
(Wesley et al., 2001). Tougou et al. (2006) also 
demonstrated the effect of inverted repeat construct 
containing CP gene of Soybean dwarf virus (SbDV) 
spaced by β-glucuronidase (GUS) sequences. The 
resultant transgenic soybean lines inoculated 
with SbDV remained symptomless, suggesting the 
involvement of RNA silencing in the resistance. In 
animals, delivery of sense or antisense RNA led 
to endogenous messenger RNA degradation (Guo 
and Kemphues, 1995). This type of revolution in 

animals was detected by the injection of dsRNA in 
Caenorhabditis elegans that resulted in endogenous 
mRNA degradation and it has been referred to 
as ‘RNA interference’ (RNAi) (Fire et al., 1998). 
Subsequently, the discovery of shorter forms of 
small RNA (siRNA) i.e. ~25 nucleotides (nt),from the 
longer dsRNA has been considered as hall mark of 
RNA silencing (Hamilton and Baulcombe, 1999).

Figure 1. Schematic representation of RNAi  
   mechanism in plants

Coat Protein (CP)- based RNAi

Pradeep et al. (2012) established that sunflower 
and tobacco transgenic lines that are expressed with 
inverted repeat-TSV CP gene showed the resistance 
to infection of TSV and lower levels of accumulation 
of TSV were observed compared with non-transgenic 
plants. Guo et al. (2015) developed the transgenic 
sugarcane expressing CP gene of Sorghum mosaic 
virus (SrMV) based on the RNA silencing approach. 
It was reported that transgenic line expressing 
the RNA cassettes showed resistance against 
SrMV upon artificial inoculation. Similarly, tobacco 
plants transformed with hpRNA containing CP 
gene of TSV through the Agrobacterium, mediated 
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Table 1. RNAi mediated resistance in plants against virus diseases

Crop Virus Gene used for 
resistance Reference

Tobbaco / rice Potato virus Y (PVY) Protease (Pro) gene Waterhouse et al. (1998)

Tobacco Cotton leaf curl virus (CLCuV) AC1 double-stranded RNA Asad et al. (2003)

Arabidopsis thaliana Turnip mosaic virus (TuMV) Coat protein Nomura et al. (2004)

Tomato Tomato yellow leaf curl virus (TYLCV) AC1 double-stranded RNA Yang et al. (2004)

Papaya Papaya ringspot virus W (PRSV-W) Coat protein
Krubphachaya et al. 
(2007)

Soybean Soybean dwarf virus (SbDV) Coat protein Tougou et al. (2006)

Tobacco
Cucumber green mottle mosaic virus 
(CGMMV)

Coat protein Kamachi et al. (2007)

Groundnut Tobacco streak virus (TSV) Coat protein Bag et al. (2007)

Tomato Tomato leaf curl virus (ToLCV) Replicase Ramesh et al. (2007)

Common Bean Bean golden mosaic virus (BGMV) Replicase Bonfim et al. (2007)

Rice Rice tungro bacilliform virus (RTBV) DNA encoding ORF IV Tyagi et al. (2008)

Tobacco Potato virus Y (PVY) Coat protein Vargas et al. (2008)

Lettuce Mirafiori lettuce virus(MiLV) Coat protein Kawazu et al. (2009)

Cassava
Cassava brown streak Uganda virus 
(CBSUV)

Coat protein Yadav et al. (2011)

Tobacco Tobacco streak virus (TSV) Coat protein Pradeep et al. (2012)

Banana Banana bunchy top virus (BBTV) Replicase Elayabalan et al. (2013)

Tomato Cucumber mosaic virus (CMV) Replicase Ntui et al. (2014)

Tobacco Tobacco streak virus (TSV) Coat protein 
Rajamanickam et al. 
(2015a)

Tobacco Tobacco streak virus (TSV) Replicase 
Rajamanickam et al. 
(2015b)

Rice Rice stripe virus (RSV) Coat protein Li et al. (2016)

Banana Banana bunchy top virus (BBTV) Replicase Elayabalan et al. (2017)

Groundnut Tobacco streak virus (TSV) Coat protein Senthilraja et al. (2018)

Cassava
South African cassava mosaic virus 
(SACMV)

Replicase Walsh et al. (2019)

Tobacco Srilankan cassava mosaic virus (SLCMV) Coat protein Gogoi et al. (2019)

Tomato Groundnut bud necrosis virus (GBNV)
Coat protein, Replicase 
protein

Suganyadevi (2019)

transformation exhibited resistance to TSV upon 
mechanical inoculation and ELISA confirmed the 
lower level of virus titre in transgenic tobacco lines 
(Rajamanickam et al., 2015a). Gogoi et al. (2019) 
found that transgenic tobacco plant expressing 
sense and antisense orientation of CP gene of Sri 
Lankan cassava mosaic virus (SLCMV) showed 
resistance to SLCMV. The Northern blot analysis 
of tobacco line confirmed the expression of virus 
specific siRNAs, indicated that RNA silencing 
technology has been adopted in virus resistance. 

Jia et al. (2017) developed the transgenic lines that 
are expressed with CP gene of Papaya ringspot virus 
(PRSV) showed a wide spectrum of resistance against 
PRSV I, II and III subgroup and Northern blot analysis 
the production of siRNA in transgenic lines confirms 
the RNA interference. Senthilraja et al. (2018) 
investigated the development of transgenic peanuts 
by expressing the hpRNA cassettes containing 
CP gene of TSV through Agrobacterium-mediated 
transformation. The developed transgenic line 
showed resistance against TSV upon sap inoculation 
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under greenhouse conditions, which suggested that 
the resistance in peanut plants against TSV was 
induced through genetic manipulation by expressing 
dsRNA of CP gene of TSV as marker for RNAi. Chen 
et al. (2019) found that chimeric hpRNA comprising 
CP genes of Cymbidium mosaic virus (CymMV) and 
Odontoglossum ringspot virus (ORSV) expressed 
in tobacco showed normal growth and produced 
no symptoms when inoculated with CymMV and 
ORSV as mixed inoculum, which conferred the RNA 
mediated interference.

Movement Protein (MP) based RNAi

The MP gene of several viruses has been 
demonstrated to be the useful gene to suppress 
the disease in transgenic plants. For example, 
RNA interference-based gene construct containing 
part of movement protein gene derived from 
Chickpea chlorotic dwarf Pakistan virus (CpCDPKV) 
expressed in N. benthamiana showed the optimistic 
resistance against CpCDPKV (Nahid et al., 2011). 
Similarly, transgenic tobacco lines expressed with 
hpRNA comprising MP gene of Tobacco mosaic 
virus (TMV) exhibited comprehensive resistance 
to TMV. Furthermost, high level of TMV replication 
was observed in all the tobacco control plants, 
whereas an undetectable level of TMV multiplication 
was observed in transgenic plants challenged 
with CMV and TMV (Hu et al., 2011). The artificial 
miRNA169a consisting of 21 nucleotides derived 
from V2 gene (movement protein) region of Cotton 
leaf curl Burewala virus (CLCuBuV) transformed in 
cotton showed partial resistance against CLCuBuV 
and artificial inoculation of transgenic lines showed 
complete resistance against Cotton leaf curl 
Kokhran virus (CLCuKoV).

Further analysis revealed the possibility of RNA-
mediated resistance in transgenic cotton (Ali et al., 
2013). Ntui et al. (2015) revelated that cassava-
transgenic lines expressing the dsRNA derived 
from part of AV2 and AV1 (movement protein) of Sri 
Lankan cassava mosaic virus (SLCMV) showed high 
level of resistance against SLCMV. The Northern blot 
analysis confirmed the presence of siRNA specific to 
target gene of SLCMV, indicated the RNA silencing 
mediated resistance. Similarly, double-strand RNA 
derived from movement protein gene of Sesbania 
mosaic virus (SeMV) showed resistance in Sesbania 
plants against SeMV and MP gene-derived dsRNA 
provided higher level of resistance compared to 
dsRNA derived from CP gene. The sequence specific 
target conferred the resistance mechanisms in 
Sesbania, which indicated the RNA silencing 
mediated resistance (Konakalla et al., 2019).  

Replicase based RNAi

The transgenic tobacco plants expressed with 
hpRNA containing the part of replicase gene of 

Chickpea chlorotic dwarf Pakistan virus (CpCDPKV) 
impaired the symptom expression of CpCDPKV and 
real-time PCR analysis confirmed the lower level of 
virus titre in transgenic lines (Nahid et al., 2011). 
Shekhawat et al. (2012) developed the transgenic 
banana expressing the intron-hpRNA comprised 
with replication initiation protein (Rep) of Banana 
bunchy top virus (BBTV). The transgenic lines were 
resistant to BBTV and siRNA analysis confirms the 
mechanism based on RNA interference. Elayabalan 
et al. (2013) developed transgenic banana plants 
expressing the replicase gene of banana bunchy 
top virus (BBTV) through Agrobacterium-mediated 
transformation. Transgenic lines expressing RNAi-
rep gene construct showed resistance to BBTV; 
symptomless and suppressed level of replication of 
virus was also observed. Jada et al. (2014) found 
that full-length expression of TMV in tobacco plants 
showed resistance against TMV and expressed 
the multiple defense mechanisms, including the 
presence of reduced level of viral replication in 
virus challenged transgenic lines. Peng et al. (2014) 
found that transgenic tobacco harboring hpRNA 
derived from RNA dependent RNA polymerase of 
Watermelon silver mottle virus (WSMoV) exhibited 
the broad-spectrum resistance against different 
Tospoviruses like Groundnut yellow spot virus, 
Groundnut chlorotic fan spot virus, Impatiens 
necrotic spot virus and Tomato spotted wilt virus.

Similarly, transgenic tomato expressing the same 
construct showed resistance against WSMoV and 
other Tospoviruses. The tobacco plants transformed 
with hpRNA containing replicase gene of TSV through 
thetransformation mediated by Agrobacterium 
exhibited resistance to TSV upon mechanical 
inoculation and ELISA confirmed the lower level of 
virus titre in transgenic tobacco lines (Rajamanickam 
et al., 2015b). The squash plants expressing the 
hpRNA construct derived from replicase gene of 
Squash leaf curl virus (SqLCV) showed resistance 
against SqLCV. Further, qPCR analysis confirmed 
reduction in virus accumulation of virus genome in 
transgenic plants (Taha et al., 2016). Elayabalan 
et al. (2017) developed the RNAi gene construct 
corresponding to replicase gene of banana bunchy 
top virus (BBTV). The banana cv. Virupakshi (AAB) 
plants injected with Agrobacterium-containing 
construct did not produce any symptoms of BBTV 
after 45 days of infection whereas, non-injected 
plants have produced the symptoms, suggested the 
RNA mediated resistance.Suganyadevi et al. (2019) 
developed the hpRNA construct corresponding 
to replicase gene of groundnut bud necrosis 
virus (GBNV). The tomato cv. PKM1 injected with 
Agrobacterium containing construct through in-
planta transformation technique did not produce any 
symptoms, whereas non-transgenic plants produced 
the symptoms. 
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Table 2. List of viral proteins act as suppressors

S. No Virus Genus Genome Viral 
proteins Mechanism of action Reference

1. Tobacco streak virus Ilarvirus RNA  2b - Valentine et al. (2004)

2. Cucumber Mosaic Virus Cucumovirus RNA  2b - Duan et al. (2012)

3. Citrus leaf blotch virus Citrivirus RNA MP - Renovell et al. (2012)

4. Tomato spotted wilt virus Tospovirus RNA NSs

Sequesters both long dsRNA 

and double-stranded siRNA 

or miRNA

Schnet t le r  et  a l . 

(2010)

5. Beet yellows virus

Closterovirus

RNA P21 Sequesters siRNA duplexes Ye and Patel (2005)

6. Citrus tristeza virus RNA
p23, capsid 

protein, p20
- Lu et al. (2004)

7.
Sweet potato chlorotic stunt 

virus, Tomato chlorosis virus
Crininvirus RNA P22 Sequesters siRNA duplexes Kataya et al. (2009)

8. Beet western yellow virus Polerovirus RNA P0 protein Targets AGO1 to degradation Csorba et al. (2010)

9. Pea enation mosaic virus RNA P0 protein Targets AGO1 to degradation Fusaro et al. (2012)

10. Wheat streak mosaic virus Tritimovirus RNA P1 Protein - Young et al. (2012)

11. Rice stripe virus Tenuivirus RNA NS3 Sequesters siRNA duplexes -

12. Red clover necrotic virus Dianthovirus RNA MP -

13. Turnip yellow mosaic virus Tymovirus RNA P69 - Chen et al. (2004)

14. Tobacco mosaic virus Tobamovirus RNA

Small 

replicase 

subunit

Vogler et al. (2007)

15. Tomato yellow leaf curl virus
Begomovirus

DNA C4 Sequesters siRNA duplexes Luna et al. (2012)

16. Mungbean yellow mosaic virus DNA TrAP / AC2 - Trinks et al. (2005)

17. Banana bunchy top virus Babuvirus DNA Clink, MP - Niu et al. (2009)

Applications of RNAi

RNA interference is a useful reverse genetic 
technology for evaluating gene functions in a 
variety of species and organisms. It has been first 
adopted to determine the role of chromosome I 
and II of Caenorhabditis elegans through gene 
knockout techniques. The study identified the role 
of these genes involved in embryonic development 
and cell division in C. elegans (Fraser et al., 2000; 
Gonczy et al., 2000). Similarly, the production of 
decaffeinated coffee plants was developed by 
knocking down the theobromine synthase gene 
using hairpin constructs (Ogita et al., 2003). In 
addition, RNAi is useful in multipurpose applications 
like disease control in crops, specifically the viruses, 
treatment of tumorsin medical application, control 
of bacterial and parasites in the medical industry, 
drug development and production of model animal 
for research (Pereira and Cendes, 2013). RNAi can 
promote the screening and production of drugs by 
discovering genes that can impart drug resistance 
or genes whose mutantphenotypes area meliorated 
by drug therapy, providing information on modes of 

action of new compounds.Itwas also a preferred 
method of application to investigate the concurrent 
functions of multiple genes expressing the functions 
in organisms, where duplication occurs concerning 
a specific function, as many of these genes may 
be silenced simultaneously. The polymer and lipid-
nanoparticles-based delivery of siRNA was effective 
in delivering the siRNA into the human body that 
facilitates the broad translational success of RNA 
interference (RNAi) technology in therapeutic 
applications (Pottash et al., 2019).

The gene silencing effect was first detected in 
petunia plants through the delivery of exogenous 
transgenes to up-regulate the activity of the 
chalcone synthase gene, an enzyme involved in 
the development of particular pigments (Napoli et 
al., 1990). The incorporation of transgene resulted 
in the production of variegation with complete 
loss of color. This might be due to the introduced 
homologous DNA sequence, which indicated the 
possible mechanism of suppression of endogenous 
loci and the phenomenon was called as “co-
suppression”(Hannon, 2002). Later, the technology 
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was instrumental in agriculture for crop development 
and enhanced plant nutritional value (Abdolhamid 
et al., 2010). The RNAi technology can also be 
used effectively to improveseed germination and 
nutritional quality in plants. A high-lysine maize 
variant has been developed by knocking out the 
expression of the 22-kD maize zein storage protein 
(Segal et al., 2003). The myo-inositol-3-phosphate 
synthase (MIPS1) gene from soybean is involved 
in phytic acid (PA) biosynthesis. PA is the major 
phosphorus reserve material in soybean seeds and 
it is a potent iron chelator, causing deficiencies that 
lead to malnutrition. The disrupted MIPS1 gene 
through RNAi approach, limiting the enzyme PA 
biosynthesis in soybean seeds, leads to improved 
quality of seed with more of minerals (Kumar 
et al., 2019). RNA-induced silencing technology 
has become one of the favored methods for 
inducing resistance to viruses in plants. RNAi has 
been exploited for the management of several 
plant viruses in agriculture crops. Tobacco plant 
expressing coat protein and replicase genes of 
TSV showed resistance against TSV through RNAi 
mediated resistance mechanism (Rajamanickam 
et al., 2015a,b). Cowpea plant employed with RNA 
silencing technology by expressing transcriptional 
activator protein AC2 (TrAP) has shown resistance 
against Mungbean yellow mosaic India virus 
(MYMIV) (Kumar et al., 2017). The chimeric gene 
construct containing CP and silencing suppressor 
genes of Cucumber mosaic virus (CMV) and the 
Potato virus Y (PVY) expressed in the tobacco plant 
exhibited more siRNA than the construct containing 
a single hairpin structure. The transgenic tobacco 
plants showed resistance against mixed infection 
of CMV and PVY (Xie et al., 2014). The genes from 
viral genomes used to develop transgenic plants to 
manage the virus diseases are appended in table 1.

Post-transcriptional gene silencing (PTGS)

Post-transcriptional gene silencing can be 
achieved either by degradation of transcripts 
or by translational inhibition by siRNAs. Most of 
the research carried out in Arabidopsis thaliana 
indicates signal as directed by small interfering 
RNAs (Xie et al., 2004). In plants, RNA silencing 
pathways are greatly classified based on their 
functional requirements (Baulcombe, 2004; Meister 
and Tuschl, 2004). There are four pathways viz., 
micro RNA (miRNA) pathway, small interfering RNA 
pathway, RNA directed DNA methylation pathway 
and exogenic RNA silencing pathway. The concept 
of RNAi first came into the limelight of the world by 
the discovery of the role of purified dsRNA injected 
into the body of Caenorhabditis elegans (Fire et al., 
1998). After injection of dsRNA, which corresponds 
to the nucleotide segment of unc22 encoded for 
a non-essential myofilament protein into an adult 

nematode, corresponding decreased activity leads 
to severe twitching phenotype was noticed, dsRNA 
injected nematode showed weak twitching, where 
progenies were also strong twitchers. Drosophila 
embryo extracts has been well studied for the 
biochemistry of RNA silencing and recorded with a 
two-step reaction viz., initiation and effector phases. 
During the initiation step, longer dsRNA molecules 
are converted into siRNA or miRNA species. Small 
RNAs characteristic with the size of 21-26 bp 
contain 2 nt 3’-overhangs and 5’- phosphorylated 
termini formed by RNase-III-type enzymes from the 
Dicer protein family (Bernstein et al., 2001). The 
molecules of siRNA and miRNA are distinct in their 
origin and structure, The miRNA molecules are 
host- encoded and derived from long single stranded 
(ss) RNAs(Bartel, 2004). During effector phase, 
one strand of the siRNA or miRNA duplex is loaded 
onto a ribonucleoprotein complex, the RNA induced 
silencing complex (RISC) for sequence specific 
identification of target RNAs (Schwarz et al., 2003; 
Tomari and Zamore, 2005). Viruses can be the 
source, the target, or both the source and the target 
of silencing. Virus-mediated post-transcriptional 
gene silencing (PTGS) can occur with RNA viruses 
which can replicate in the cytoplasm and also for 
DNA, which replicate in the nucleus (English et al., 
1996). Generally, sense and antisense components 
of transgenes were separated by an intron to 
increase the efficiency of PTGS (Smith et al., 2000).  
The component involved in the RNA silencing 
mechanism are dicer which belongs to the RNase III 
family, Argonaute2 protein, RNA and DNA helicases, 
translation initiation factor, RNA- dependent RNA 
polymerase and transmembrane protein as channel 
or receptor. 

Enzymatic behavior of the members of the 
Argonaute (AGO) protein family assists the 
programmed RISC to divide complementary 
mRNAs or arrest their translation (Fagard and 
Vaucheret, 2000; Hammond et al., 2000). In plants 
and animals, molecular and genetic research has 
discovered multiple pathways of RNA silencing 
where various small RNAs and RNA silencing 
proteins play a major role. The next big step in this 
silencing method is separating dsRNA into small 
dsRNA fragments, called dicer (Bernstein et al., 
2001). These short sequences of unique RNAs 
of 21-25 nucleotides are detectable in all cells 
where PTGS is involved (Hamilton and Baulcombe, 
1999). The shorter dsRNAs are often referred to as 
“short interfering RNAs” because they constitute an 
intermediate that can trigger the silencing process. 
The siRNAs will be integrated into the RNA-inducing 
silence complex (RISC) induced with RNA (Hammond 
et al., 2000), which is the actual sequence-specific 
endoribonuclease that cleaves single-stranded 
target RNA. 
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Table 3. List of viruses to develop VIGS vectors

Virus Genus Genome Host Sequence Targeted gene Reference

Plum pox virus (PPV) Potyvirus RNA
Nicotiana benthamiana 

Prunus domestica

Coat protein 

gene
Coat protein gene

Guo et al. (1999); 

Scorza et al. (2013)

Papaya ring spot virus (PRSV) Potyvirus RNA Papaya caricae
Coat protein 

gene
Coat protein gene Gonsalves et al. (2004)

Potato leaf roll virus (PLRV) Polerovirus RNA Solanum tuberosum
Replicase 

protein gene

Replicase protein 

gene

Kaniewski and Thomas 

(2004)

Potato virus Y (PVY) Potyvirus RNA
Solanum tuberosum

Coat protein 

gene
Coat protein gene

Kaniewski and Thomas 

(2004)

Nicotiana benthamiana GFP Jones et al. (1999)

Cucumber mosaic virus 

(CMV)
Cucumovirus RNA

Cururbita pepo
Coat protein 

gene
Coat protein gene Tricoli et al. (1995)

Petunia hybrid and 

Solanum lycopersicum
2b protein

CHS-A gene for 

chalcone synthase
Kanazawa et al. (2010)

Zucchini yellow mosaic virus 

(ZYMV), Watermelon Mosaic 

Virus (WMV)

Potyvirus RNA Cururbita pepo
Coat protein 

gene
Coat protein gene Tricoli et al. (1995)

Tobacco etch virus (TEV) Potyvirus RNA Nicotiana benthamiana
Coat protein 

gene
Coat protein gene Lindbo et al. (1993)

Pea seed-borne mosaic virus 

(PSbMV)
Potyvirus RNA Pisum sativum

Replicase 

protein gene

Replicase protein 

gene
Jones et al. (1998)

Tobacco rattle virus (TRV) Tobravirus RNA

Nicotiana benthamiana
NbPDS

NbChlH

Phytoene 

desaturase, 

Magnesium 

chelatase 

Senthil Kumar and 

Mysore (2011)

Solanum lycopersicum sIPDS
1-deoxy-D-xylulose-5-

phosphate synthase

Barley stripe mosaic virus 

(BSMV)
Hordeivirus RNA Hordeum vulgarae PDS gene

Phytoene 

desaturase

Bruun Rasmussen et al. 

(2007)

Apple latent spherical virus 

(ALSV)
Cheravirus RNA Glycine max  PDS

Phytoene 

desaturase
Yomagishi et al. (2011)

Pea early browning virus Tobravirus RNA Pisum sativum pds, uni, kor pds, uni, kor Constantin et al. (2004)

Poplar mosaic virus Carlavirus RNA N. benthamiana gfp gfp Naylor et al. (2005)

Potato virus X Potexvirus RNA
A. thaliana, 

N. benthamiana

gus, pds, 

DWARF,

SSU, NFL, LFY

gus, pds, DWARF, 

SSU, NFL, LFY
Ruiz et al. (1998)

Bean pod mottle virus Cucumovirus RNA Glycine max PDS
Phytoene 

desaturase
Zhang et al. (2006)

Brome mosaic virus  (BMV) Bromovirus RNA
Hordeum vulgare, Oryza 

sativa and Zea mays

pds, actin 1, 

rubisco activase

pds, actin 1, 

rubisco activase
Ding et al. (2006)

Turnip yellow mosaic virus Tymovirus RNA A. thaliana pds, lfy pds, lfy Pflieger et al. (2008)

African cassava mosaic virus 

(ACMV)
Begomovirus DNA

N. benthamiana PDS
Phytoene 

desaturase

Fofana et al. (2004)Manihot esculenta CYP79D2
Endogenous

genes

N. tabacum Su
magnesium

chelatase complex

Cabbage leaf curl Virus  Begomovirus DNA Arabidiopsis thaliana gfp, CH42, pds gfp, CH42, pds Turnage et al. (2002)

Tomato golden mosaic virus Begomovirus DNA N. benthamiana su, luc su, luc Peele et al. (2001)

Tomato yellow leaf curl China 

virus– associated b DNA 

satellite

Begomovirus DNA

N. benthamiana

S. lycopersicum, 

N. glutinosa, 

N. tabacum

pcna, pds, su, 

gfp
pcna, pds, su, gfp Tao et al. (2004)

Bean golden mosaic virus 

(BGMV)
Begomovirus DNA Phaseolus vulgaris Replicase gene Replicase gene Faria et al. (2016)
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RNAi can be caused in plants by the application 
of expression vectors that transcribes a self-
complementary dsRNA (Horiguchi, 2004; Watson et 
al., 2005). Several studies have shown that inverted 
repeat construct encodes self-complementary 
RNAs (hairpin RNAs) and effectively induced RNA 
silencing, leading to high resistance in transgenic 
plants (Smith et al., 2000; Chen et al., 2004). In 
transgenic plants, gene silencing can be achieved 
with constructs that express self-complementary 
RNA containing sequences homologous to the target 
genes (Helliwell and Waterhouse, 2003). These RNAi 
constructs include a series of spacers between an 
inverted repeat and the corresponding transcript 
from the stem-loop structure of the RNAi construct. 
These transcripts are thus sometimes referred to 
as hairpin RNAs (hpRNAs). Spacer sequence in the 
vector allows stable replication of RNAi plasmids in 
E. coli (Lee and Carthew, 2003). pHANNIBAL and 
pKANNIBAL with bacterial ampicillin and kanamycin-
resistant genes, respectively, were designed 
by Wesley et al. (2001). For the development 
of hairpinRNA (hpRNA), a loop of 30-50 bases 
depending on various restriction sites were used to 
insert targeting gene sequences. In addition, it has 
been reported that the hpRNA constructs containing 
sense/anti-sense arms range from 98 to 853 
nucleotides gave efficient silencing in a wide range 
of plant species and inclusion of an intron in these 
constructs had a consistently enhancing effect. 
The degree of silencing was observed 90-100% 
greater than that obtained in either co-suppression 
or antisense constructs. The presence of intron in 
between two complementary regions enhances 
silencing efficiency (Smith et al., 2000). 

Suppression of gene silencing

RNA silencing is a conserved eukaryotic event 
in the eukaryotic pathway that involves clampdown 
of specific gene expression facilitated by 21-24nt 
siRNA. Previously, an antiviral function of RNA 
silencing in a transgenic plant after infection with 
a potyvirus was demonstrated through molecular 
analysis (Lindbo et al., 1993). Antiviral function 
explained the accumulation of siRNAs which 
are derived during viral infection at high level. 
Symptoms were appeared in the infected plants, 
and later, plants were recovered from the infection 
and become resistant to ensuing infection with the 
same virus. More studies reported and supported 
this model (Table 2). To counteract on RNAi antiviral 
defense, viruses from all the genera encoded for 
viral suppressors of RNA silencing. It inhibits major 
steps of RNAi system. Viral suppressing pathways 
primarily inhibit the siRNA biogenesis by preventing 
the recognition of siRNA by the AGO effector, RNA-
induced silencing complex, and enzymes responsible 
for DNA-methylation in the host.

Suppression of RNA silencing through viral 
suppressors

A) Inhibiting viral RNA sensing and dicing

Two viral proteins like P14 of Pothos latent 
aureusvirus and P38 of Turnip crinkle virus bind 
with dsRNA in a size-independent way (Merai et al., 
2005, 2006). It has been shown that P38 inhibits 
the DCL4 in the Arabidopisis (Deleris et al., 2006). 
P38 protein interferes with AGO1 binding, which 
leads to inhibition of DCLS (Azevedo et al., 2010). 
In Cauliflower mosaic virus (CaMV), P6 has been 
shown as viral translational trans-activator protein 
for virus-derived small interfering RNAs (vsiRNA). P6 
protein was recorded as RNA silencing suppressor 
and it binds with dsRNA,which has been required for 
the functioning of DCL4 (Haas et al., 2008).

B) Inhibiting the RNA induced silencing complex 
(RISC)

Viral suppressor of RNA silencing can prevent 
RISC complex. They can accomplish target AGO 
proteins, siRNAs and miRNAs in a wide variety 
of mechanisms. Among the various suppression 
activities, the most common strategy is dsRNA 
suppression, which stops the assembly of the 
RISC effector (Lakatos et al., 2006; Csorba et al., 
2007, 2010; Wu et al., 2010). The P19 protein is 
the best-known viral suppressor of RNA silencing 
(VSRs) in tombusviruses, which binds with ds siRNA 
having high affinity (Vargason et al., 2003). For all 
biogenesis processes of siRNAs and miRNAs, 2’-O 
methylation step is highly essential. Viral protein viz., 
HC-Pro gene of Tobacco etch virus, P122/130 of 
Tobamovirus and P19 of Carnation Italian ringspot 
virus involves in preventing si/miRNA RISC assembly 
(Vogler et al., 2007; Lozsa et al., 2008; Yu et al., 
2006). During the suppression process by the VSRs, 
siRNA is sequestered and its binding is inactivated 
before incorporation into RISC complex resulted in 
the spread of viral infection in the plants.

C) Inhibitingthe AGO protein
Assembly of RISC complex has been prevented 

directly or indirectly by interactions of RISC 
complex and VSRs (Burgyan and Havelda, 2011). 
In Cucumber mosaic virus (CMV), The 2b protein 
prevented the proliferation of long-range signal, 
which facilitates systemic infection of virus (Guo and 
Ding, 2002). Additionally, CMV 2b protein interacts 
with the PAZ domain and inhibits the slicing activity 
of AGO11 (Zhang et al., 2006) and co-localized in 
the nucleus of the cell (Mayers et al., 2000). Tomato 
aspermy virus (TAV), 2b protein binds with long 
dsRNA and inhibits the synthesis of viral secondary 
siRNAs (Diaz Pendon et al., 2007). It is concluded 
that 2b protein has dual role in either by concealed 
siRNA or by relating with AGO1 and foiling the 
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assembly of RISC complex. Similarly, the P0 protein 
of poleroviruses has also been involved in targeting 
the essentialactivities of RISC complex and AGO 
protein, resulted in suppression of RNA silencing 
through induced degradation (Baumberger et al., 
2007; Bortolamiol et al., 2007).

Virus-induced gene silencing 

Virus-induced gene silencing (VIGS) has been 
considered as a mechanism demonstrated with 
the homology-dependent degradation of RNA via 
plant-virus-derived vectors carrying endogenous 
gene sequences. Without the need for genetic 
transformation in plants, VIGS has been explored as 
an effective tool for reverse genetics and developed 
to evaluate the gene functions in various plant 
species. VIGS’s success is due to five factors, 

1.	 Methodology is simple and frequently involved 
with agroinfiltration or biolistic inoculation.

2.	 The results are attained within short period of 
time i.e., some weeks after inoculation.

3.	 The tool avoids the transformation process and 
applicable to a greater or a wide variety of plants.

4.	 It shows the potential to silence several genes 
and 

5.	 Can be used for forward and reverse genetics 
(Senthil Kumar and Mysore, 2011). 

6.	 VIGS was first described as the mechanism 
of retrieval from virus diseased plants. Now 
the term VIGS is analogous to the process of 
knock-down expression of endogenous genes 
by a recombinant viral vector.VIGS is based 
on RNA interference (RNAi), which refers to 
gene expression interference mediated in a 
sequence-specific manner by tiny RNA. Pathway 
manifestations are referred to in plants as Post 
Transcriptional Gene Silencing (PTGS) (Lindbo et 
al., 1993; Soosaar et al., 2005), RNAi in animals 
(Fire et al., 1998) and Quelling in fungi (Cogoni et 
al., 1996). To develop the VIGS vectors, several 
RNA and DNA genomes have been used (Table 
3) (Burch-Smith et al., 2004). VIGS have been 
reported in both monocot like barley, wheat, 
rice, maize, ginger and banana and also in dicot 
plants like Eschscholzia californica, Aquilegia 
vulgaris, Papaver somniferumand Thalictrum 
species. Several viral vectors were obtained 
from positive-strand RNA viruses, which include 
TMV, Potato virus X and Tobacco rattle virus 
(Lange et al., 2013) and DNA virus, like African 
cassava mosaic virus (ACMV) (Fofana et al., 
2004). For agro-inoculation, VIGS vectors were 
derived using a cDNA copy of the viral genome 
that is inserted into the binary vector and 
translated into the A. tumefaciens strain.

Mechanism of virus-induced gene silencing

VIGS is focused on the ability of plant viruses to 
activate a PTGS-related plant defense mechanism. 
Post-transcriptional gene silencing is activated by 
the perception of dsRNA. Both RNA and DNA viruses, 
during their genome expression or replication, a 
viral double-stranded RNA can be produced from 
various sources: 

1.	 Transcriptions of DNA viruses cause RNA 
transcripts to overlap (Ding and Voinnet, 2007)

2.	 By cellular or viral RNA dependent RNA 
polymerase, viral ssRNA converted into dsRNA  
(Lu et al., 2003)

3.	 Through intra-molecular base pairing, hairpin 
dsRNA (Molnar et al., 2005).

RNA interference mechanism is a phenomenon 
in which small dsRNA evades the expression of 
targeted genes through the sequence-specific 
degradation of mRNA. VIGS is one of the approaches 
to studying the specific gene function in plants. RNA 
viruses produce dsRNA during the multiplication in 
the host by the action of virus-encoded RdRP. The 
TRV3 genome of Tobacco rattle virus modified to 
carry with target gene and agroinfiltration in three 
weeks old tobacco plants induced the silencing of 
sequence-specific target in newly emerging leaves 
confirms the VIGS mechanism (Senthil Kumar 
and Mysore, 2014). Similarly, VIGS target gene in 
sense and antisense orientations into the Tobacco 
ringspot virus by mutating the sequence following 
the CP stop codon for the transient expression of 
foreign genes. The VIGS of phytoene desaturase 
(PDS) in N. benthamiana lead to the development 
of noticeable photo-bleaching phenotypes (Zhao et 
al., 2016). The viruses used to develop VIGS vectors 
is listed in Table 3.

Future research

The development of resistance in plants through 
conventional approaches is slow because of lack of 
knowledge on the genetic variation among plants 
against viruses. In this context, artificial double-
stranded RNA (dsRNA) derived from the genome 
of virus offers a powerful way for resistance in host 
plants. RNAi-mediated silencing of viral genes such 
as replicase or coat protein leading to sequence-
specific transcript degradation which can interfere 
with the viral replication process. The direct delivery 
of in vitro-transcribed dsRNA by mechanical 
inoculation interferes with the virus infection in a 
sequence specific manner. The dsRNA production 
is extremely low cost compared toregeneration of 
transgenic plants. This approach provides a reliable 
and potential tool for plant protection against virus 
diseases in future.
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CONCLUSION 

The RNA silencing technology is a powerful tool, 
which facilitates the wider applications in the field 
of agriculture to develop improved crop varieties 
and astounding plant with a wider biotic and 
abiotic stress resistance. The tool has well been 
exploited for the effective management of plant 
virus diseases. However, the exogenous application/
delivery of RNAi methodology has to be standardized 
for effective suppression of plant viruses. 
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