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ABSTRACT

An ultrasonic pretreatment was evaluated for the delignification of the 
corncob biomass. The ultra-sonication process was carried in an ultrasonic 
water bath for 1 h, 33 kHz, and 100 watts. Three different pretreatment 
combinations were studied: corncob with distilled water, corncob with buffer, 
and corncob with buffer and enzyme (Trametes versicolor), and assessed 
for lignin reduction, hemicellulose reduction, and cellulose increase. The 
results indicated that sonication of corncob biomass with the enzyme yielded 
44.19%, 6.74%, and 15.39% of lignin and hemicellulose reduction and 
cellulose increase, respectively. In FTIR, a reduction in peak intensity for lignin 
at wavenumbers 1697.05 cm-1, 1534.1 cm-1 and 1328.71 cm-1 was noticed. 
Thus, ultrasonic pretreatment can be effectively used for the delignification 
of corncob biomass.
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INTRODUCTION

Lignocellulosic biomass (LCB) is considered as 
the future of sustainable energy sources, which 
consists of cellulose, hemicellulose (fermentable 
sugars), and lignin (phenyl propanoid units). Though, 
the use of LCB is restricted by its low digestibility, 
which is mainly attributed to the high crystallinity 
nature of cellulose and the lignin covering (Himmel  
et al., 2007). The process of lignocellulosic 
conversion into glucose is via hydrolysis, for that 
the lignin bound to xylan and glucomannan (Lawoko 
et al., 2006) is recognized to be a recalcitrant 
compound. Therefore, pretreatment is necessary 
to delignify and facilitate the disruption of the 
lignocellulosic moiety. Pretreatment alters the 
cellulose structure and making it more accessible 
to the enzyme that converts carbohydrate polymer 
into fermentable sugar (Bak et al., 2009; Gabhane 
et al., 2014). 

Many strategies have been recommended for 
the efficient pretreatment, including lime, steam 
explosion, dilute acid, liquid hot water, and ammonia 
fiber explosion (Mood et al., 2013). However, 
conventional acid pretreatment at high temperature 
(160 ºC) repeatedly causes excessive hemicellulose 
degradation, resulting in furfural formation that 
strongly inhibits fermentative microbes (Klinke  
et al., 2004). Therefore, the pretreatment conditions 
are requisite to be mild, ideally room temperature 
and atmospheric pressure, but sufficiently effective. 
Ultrasonication can be a promising alternative 

to conventional hydrolysis techniques (Wong 
et al., 2009). The ability of ultrasonication in 
degrading polymeric sequences has been well 
documented, particularly in synthetic materials 
dissolved in various solvents (Gronroos et al., 2004) 
and in extracting lignin and hemicellulose from 
lignocellulosic materials (Sun and Tomkinson, 2002; 
Gabhane et al., 2014). 

Applications of ultrasonication are diverse in 
various fields, such as sono-assisted lignocellulosic 
pretreatment (Iskalieva et al., 2012; Bussemaker 
and Zhang, 2013), extraction of natural products 
(Shirsath et  al . ,  2012), sonochemistry of 
carbohydrate compounds (Kardos and Luche, 
2001), catalytic esterification and transesterification 
of lipids (Veljkovi et al., 2012; Badday et al., 
2012; Gole and Gogate, 2012), food processing 
(Bhaskaracharya et al., 2009), pretreatment and 
fermentation of organic wastes (e.g., bio-sludge) to 
gaseous products (e.g., H2, CH4) (Pilli et al., 2011; 
Yin et al., 2004) and biochemical engineering/
biotechnologies (Gogate and Kabadi, 2009; 
Rokhina  et al., 2009; Kwiatkowska et  al., 2011) like 
biological wastewater treatment and bioremediation. 
Therefore, the objective of the present study 
is to study the effect of ultra-sonication on the 
deliginification of corncob biomass.

MATERIAL AND METHODS

2.1 Biomass preparation

The biomass was reduced in size by shredding, 
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milling, and then sieving at 212 microns using ASTM 
No. 70 sieves. The sieved corncob was dried in a hot 
air oven at 45°C until constant weight. 

2.2 Compositional analysis of biomass

For the compositional analysis of pretreated 
biomass, the biomass sample was filtered using 
Whatman No.1 filter paper to separate biomass and 
filtrate. In order to neutralize (pH 7.0), the pretreated 
biomass was washed twice with distilled water, and 
the drying of samples was done in a hot air oven 
at 45°C. National Renewable Energy Laboratory 
(NREL) procedure was adopted for biomass 
compositional analysis of both raw and pretreated 
biomass samples (Sluiter et al., 2008).

The percentage of reduction in lignin and 
hemicellulose and the increase in the cellulose 
of corncob samples after pretreatment can be 
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2.3 Ultrasonic pretreatment of corncob biomass 

The dried extractive free sample (2.5 g) was taken in a Duran bottle in 50 mL of distilled water and kept in an 
ultrasonic water bath for 1 h at 33±3 Hz (100 watts); afterward, the sample was filtered and dried at 45 °C in 
a hot air oven. 

Ultrasonic pretreatment (1 hour, 33 3 kHz, 100 Watts)  

Biomass (2.5 g) 
+ distilled water 
(50 mL) – P1 

Biomass (2.5 g) + acetate 
buffer pH 5 (50 mL) +             
T. versicolor (12.5 mg) – P3 

Biomass (2.5 g) 
+ acetate buffer 
pH 5 (50 mL) – P2 

 
2.4 FTIR analysis  

The FTIR spectra of the test samples were obtained via FTIR (FTIR-6800 JASCO, Japan) for selected 
wavenumber (4000 to 400 cm-1) with a spectral resolution of 4 cm-1 and 64 scans per sample. 

RESULTS AND DISCUSSION 

3.1 Ultrasonic pretreatment of corncob biomass 

All the experimental trials were conducted thrice to confirm the reproducibility of the data. The cellulose, 
hemicellulose, and lignin content of raw corncob were found to be 36, 27.38, and 17.60%, respectively. The 
comparisons of different pretreatment combinations are presented in Fig. 1. The corncob biomass subjected 
to ultrasonication with acetate buffer and enzyme T. versicolor (P3) resulted in an increase in cellulose content 
of 44.35%, decrease in lignin and hemicellulose content of 10.84 and 25.8 compared to other pretreatment 
combinations (P1 and P2). The percentage of lignin reduction (44.19%), hemicellulose reduction (6.74%), and 
cellulose increase (15.39%) was observed in P3 (corncob biomass sonicated with enzyme) (Table 1).  

Delignification of corncob is due to the collapse of the cavities and shock waves generated during the 
pretreatment. Ultrasonic waves produce cavities (microbubbles) in a solution, and several of the micro-
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obtained via FTIR (FTIR-6800 JASCO, Japan) for 
selected wavenumber (4000 to 400 cm-1) with 
a spectral resolution of 4 cm-1 and 64 scans per 
sample.

RESULTS AND DISCUSSION

3.1 Ultrasonic pretreatment of corncob biomass

All the experimental trials were conducted 
thrice to confirm the reproducibility of the data. 
The cellulose, hemicellulose, and lignin content 
of raw corncob were found to be 36, 27.38, and 
17.60%, respectively. The comparisons of different 
pretreatment combinations are presented in Fig. 1. 
The corncob biomass subjected to ultrasonication 
with acetate buffer and enzyme T. versicolor (P3) 
resulted in an increase in cellulose content of 

44.35%, decrease in lignin and hemicellulose content 
of 10.84 and 25.8 compared to other pretreatment 
combinations (P1 and P2). The percentage of lignin 
reduction (44.19%), hemicellulose reduction 
(6.74%), and cellulose increase (15.39%) was 
observed in P3 (corncob biomass sonicated with 
enzyme) (Table 1). 

Delignification of corncob is due to the collapse 
of the cavities and shock waves generated during 
the pretreatment. Ultrasonic waves produce cavities 
(microbubbles) in a solution, and several of the 
micro-bubbles collapse during compression of 
the wave, leading to a locally generated extreme 
state with a temperature higher than 5000 K and 
pressure of around 50 MPa commonly called a hot 
spot (Bernstein and Zakin, 1996; Thompson and 
Doraiswamy, 1999).
Table 1. Comparison between untreated and 

treated corncob and its per cent change
Treatments Untreated Treated % Change

Corncob+ 
distilled water 
+ultrasonication

Lignin reduction 15.63 12.75 22.58

Hemicellulose 
reduction

27.54 26.32 4.64

Cellulose increase 38.44 42.54 10.67

Corncob+buffer 
+ ultrasonication

Lignin reduction 15.63 11.31 38.18

Hemicellulose 
reduction

27.54 26.49 3.96

Cellulose increase 38.44 43.31 12.68

Corncob+buffer+ 
Enzyme+ 
ultrasonication

Lignin reduction 15.63 10.84 44.19

Hemicellulose 
reduction

27.54 25.80 6.74

Cellulose increase 38.44 44.35 15.39

This local high energy disrupts the hydrogen 
bonds in the microfibrils of cellulose, resulting in 
bundles disassociation and biomass swelling. 
Furthermore, asymmetric bubble collapse near a 
solid surface induces a microjet that hits the solid 
surface at high speed (>100 m/s) (Suslick, 1990). 
A microjet generated at the biomass surface would 
greatly impact the biomass and pit the lignocellulose 
(Bussemaker et al., 2013).  

Figure 1. Comparison of different combinations 
of pretreatment

Subhedar et al., 2018 reported that in ultrasound-
assisted approach, the extent of delignification for 
groundnut shells, coconut coir, and pistachio shells 
were 71.1, 89.5, and 78.9%, respectively under the 
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optimum conditions of alkali concentration of 1 N, 
biomass loading of 0.5% (w/v), sonication power of 
100 W, a duty cycle of 80% and pretreatment time 
of 70 min. Patil et al., (2019) reported that an 
35.08% delignification of sawdust was observed at 
an alkali concentration of 1.5 N in ultrasound-
assisted delignification. The mechanism of ultrasonic 
intensification is even different for different 
reactions, different enzymes, and operations 
(O’Donnell et al., 2010). The high-intensity shearing 
stress may influence it through the vigorous bubble 
implosion or it depended on the concentration of 
chemical radicals such as.OH and .H generated by 
ultrasonic cavitation (Riesz and Kondo, 1992). 

Figure 2. FTIR spectra of different combinations 
of ultrasonic pretreatment of corncob
FTIR analysis of pretreated biomass

Raw and pretreated corncob samples were 
analyzed using Fourier Transform Infra-Red (FTIR), 
and FTIR transmittance spectrum for each treatment 
is given in Fig. 2. From the results, it was evident 
that raw corncob showed clear peaks for cellulose, 
hemicelluloses, and lignin at the corresponding 
wavenumbers. Due to biomass pretreatment, 
reduction in hemicelluloses peak intensity is 
attributed to solubilization of hemicelluloses; wave 
number 1786.72 cm-1 with a functional group of 
free ester was also greatly reduced.  Similarly, a 
reduction in peak intensity for lignin at wavenumbers 
1697.05 cm-1, 1534.1 cm-1, and 1328.71 cm-1, which 
represents a functional group of C=O stretching 
(unconjugated), aromatic ring vibration, and C-O 
of syringyl group, respectively, was noticed. The 
cellulose, hemicellulose, and lignin corresponds to a 
wavenumber of 1440.56 cm-1 and 1348 cm-1, which 
represents to a functional group of O-H in-plane 
bending and C-H vibration, O-H in-plane bending, 
respectively. The wavenumber 973.87 cm-1 and 
997.98 cm-1 represents cellulose with a functional 
group of C-O valence vibration.

CONCLUSION 

The present work demonstrated an effective 

 

 

 
Fig. 2. FTIR spectra of different combinations of ultrasonic pretreatment of corncob 

 

approach for the successful utilization of the 
corncob, which is otherwise discarded as redundant 
agricultural waste. Raw corncob pretreated with 
ultrasound-assisted with enzyme showed better 
delignification of 44.19% at 33 kHz, sonication 
power of 100 watts, and pretreatment time of 60 
min. Overall, the work demonstrated the use of 
ultrasound in the processing of sustainable biomass.
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